Skip to content

Commit

Permalink
Extend the strategy capability for adding the new data type (#555)
Browse files Browse the repository at this point in the history
* refined the tuning space

Signed-off-by: yiliu30 <[email protected]>

* fixed the merge with user cfg

Signed-off-by: yiliu30 <[email protected]>

* parse tuning space

Signed-off-by: yiliu30 <[email protected]>

* refined the tuning space

Signed-off-by: yiliu30 <[email protected]>

* clean code

Signed-off-by: yiliu30 <[email protected]>

* refine the logical

Signed-off-by: yiliu30 <[email protected]>

* fixed the pylint error

Signed-off-by: yiliu30 <[email protected]>

* fixed the typo

Signed-off-by: yiliu30 <[email protected]>

* fix typo

Signed-off-by: yiliu30 <[email protected]>

* fixed the merge

Signed-off-by: yiliu30 <[email protected]>

* fixed the auto quant

Signed-off-by: yiliu30 <[email protected]>

* fixed quant_mode error

Signed-off-by: yiliu30 <[email protected]>

* revert some change

Signed-off-by: yiliu30 <[email protected]>

* clean code

Signed-off-by: yiliu30 <[email protected]>

* add ut for int4

Signed-off-by: yiliu30 <[email protected]>

* fixed the parse order

Signed-off-by: yiliu30 <[email protected]>

---------

Signed-off-by: yiliu30 <[email protected]>
  • Loading branch information
yiliu30 authored Feb 22, 2023
1 parent 750dff7 commit d0059c4
Show file tree
Hide file tree
Showing 12 changed files with 996 additions and 368 deletions.
33 changes: 18 additions & 15 deletions neural_compressor/strategy/basic.py
Original file line number Diff line number Diff line change
Expand Up @@ -25,7 +25,7 @@

from .utils.tuning_sampler import OpTypeWiseTuningSampler, FallbackTuningSampler, ModelWiseTuningSampler
from .utils.tuning_structs import OpTuningConfig
from .utils.tuning_space import TUNING_ITEMS_LST
from .utils.constant import TUNING_ITEMS_LST

@strategy_registry
class BasicTuneStrategy(TuneStrategy):
Expand All @@ -45,13 +45,13 @@ def next_tune_cfg(self):
tuning_space = self.tuning_space
calib_sampling_size_lst = tuning_space.root_item.get_option_by_name('calib_sampling_size').options
for calib_sampling_size in calib_sampling_size_lst:
# Initialize the tuning config for each op according to the quantization approach
# Initialize the tuning config for each op according to the quantization approach.
op_item_dtype_dict, quant_mode_wise_items, initial_op_tuning_cfg = self.initial_tuning_cfg()
# Optype-wise tuning tuning items: the algorithm/scheme/granularity of activation(weight)
early_stop_tuning = False
stage1_cnt = 0
quant_ops = quant_mode_wise_items['static'] if 'static' in quant_mode_wise_items else []
quant_ops += quant_mode_wise_items['dynamic'] if 'dynamic' in quant_mode_wise_items else []
quant_ops = quant_mode_wise_items.get('static', [])
quant_ops += quant_mode_wise_items.get('dynamic', [])
stage1_max = 1e9 # TODO set a more appropriate value
op_wise_tuning_sampler = OpTypeWiseTuningSampler(tuning_space, [], [],
op_item_dtype_dict, initial_op_tuning_cfg)
Expand Down Expand Up @@ -120,22 +120,25 @@ def _initial_dynamic_cfg_based_on_static_cfg(self, op_static_cfg:OpTuningConfig)
op_state = op_static_cfg.get_state()
op_name = op_static_cfg.op_name
op_type = op_static_cfg.op_type
op_name_type = (op_name, op_type)
op_quant_mode = 'dynamic'
tuning_space = self.tuning_space
dynamic_state = {}
for att in ['weight', 'activation']:
if att not in op_state:
continue
for item_name, item_val in op_state[att].items():
att_item = (att, item_name)
if att_item not in TUNING_ITEMS_LST:
continue
if tuning_space.query_item_option((op_name, op_type), op_quant_mode, att_item, item_val):
dynamic_state[att_item] = item_val
if att not in op_state: continue
# Add dtype
full_path = self.tuning_space.get_op_default_path_by_pattern(op_name_type, op_quant_mode)
dynamic_state[att + '_dtype'] = self.tuning_space.ops_data_type[op_name_type][full_path[att]]
for method_name, method_val in op_state[att].items():
att_and_method_name = (att, method_name)
if att_and_method_name not in TUNING_ITEMS_LST: continue
if tuning_space.query_item_option(op_name_type, full_path[att], att_and_method_name, method_val):
dynamic_state[att_and_method_name] = method_val
else:
quant_mode_item = tuning_space.query_quant_mode_item((op_name, op_type), op_quant_mode)
tuning_item = quant_mode_item.get_option_by_name(att_item)
dynamic_state[att_item] = tuning_item.options[0] if tuning_item else None
quant_mode_item = tuning_space.get_item_by_path((op_name_type, *full_path[att]))
if quant_mode_item and quant_mode_item.get_option_by_name(att_and_method_name):
tuning_item = quant_mode_item.get_option_by_name(att_and_method_name)
dynamic_state[att_and_method_name] = tuning_item.options[0] if tuning_item else None
return OpTuningConfig(op_name, op_type, op_quant_mode, tuning_space, kwargs=dynamic_state)


8 changes: 4 additions & 4 deletions neural_compressor/strategy/conservative.py
Original file line number Diff line number Diff line change
Expand Up @@ -75,7 +75,7 @@ def next_tune_cfg(self):
tmp_tune_cfg = deepcopy(tune_cfg)
for item, quant_mode in items_lst:
op_info = item.name
op_config = tuning_space.set_deafult_config(op_info, quant_mode)
op_config = tuning_space.get_default_config(op_info, quant_mode)
tmp_tune_cfg[op_info] = op_config
yield tmp_tune_cfg
if self.acc_meet_flag:
Expand All @@ -87,7 +87,7 @@ def next_tune_cfg(self):
logger.info(f"*** Try to convert {op_type} op into {dtype} one by one.")
for item, quant_mode in items_lst:
op_info = item.name
op_config = tuning_space.set_deafult_config(op_info, quant_mode)
op_config = tuning_space.get_default_config(op_info, quant_mode)
tmp_tune_cfg[op_info] = op_config
yield tmp_tune_cfg
if self.acc_meet_flag:
Expand Down Expand Up @@ -358,9 +358,9 @@ def _initialize_tune_cfg(self):
for op_info in tmp_non_fp32_ops:
non_fp32_ops_dtype[op_info] = quant_mode
for op_info in fp32_ops:
initial_tuning_cfg[op_info] = tuning_space.set_deafult_config(op_info, "fp32")
initial_tuning_cfg[op_info] = tuning_space.get_default_config(op_info, "fp32")
for op_info, quant_mode in non_fp32_ops_dtype.items():
initial_tuning_cfg[op_info] = tuning_space.set_deafult_config(op_info, quant_mode)
initial_tuning_cfg[op_info] = tuning_space.get_default_config(op_info, quant_mode)
return initial_tuning_cfg

def _quant_items_pool(self, op_type_priority: List[str]) -> OrderedDict[
Expand Down
27 changes: 3 additions & 24 deletions neural_compressor/strategy/hawq_v2.py
Original file line number Diff line number Diff line change
Expand Up @@ -24,7 +24,7 @@

from .utils.tuning_sampler import OpTypeWiseTuningSampler, FallbackTuningSampler, ModelWiseTuningSampler
from .utils.tuning_structs import OpTuningConfig
from .utils.tuning_space import TUNING_ITEMS_LST
from .utils.constant import TUNING_ITEMS_LST
from ..utils import logger

@strategy_registry
Expand All @@ -51,8 +51,8 @@ def next_tune_cfg(self):
# Optype-wise tuning tuning items: the algorithm/scheme/granularity of activation(weight)
early_stop_tuning = True
stage1_cnt = 0
quant_ops = quant_mode_wise_items['static'] if 'static' in quant_mode_wise_items else []
quant_ops += quant_mode_wise_items['dynamic'] if 'dynamic' in quant_mode_wise_items else []
quant_ops = quant_mode_wise_items.get('static', [])
quant_ops += quant_mode_wise_items.get('dynamic', [])
stage1_max = 1 # TODO set a more appropriate value
op_wise_tuning_sampler = OpTypeWiseTuningSampler(tuning_space, [], [],
op_item_dtype_dict, initial_op_tuning_cfg)
Expand Down Expand Up @@ -110,24 +110,3 @@ def next_tune_cfg(self):
op_tuning_cfg['calib_sampling_size'] = calib_size
yield op_tuning_cfg

def _initial_dynamic_cfg_based_on_static_cfg(self, op_static_cfg: OpTuningConfig):
op_state = op_static_cfg.get_state()
op_name = op_static_cfg.op_name
op_type = op_static_cfg.op_type
op_quant_mode = 'dynamic'
tuning_space = self.tuning_space
dynamic_state = {}
for att in ['weight', 'activation']:
if att not in op_state:
continue
for item_name, item_val in op_state[att].items():
att_item = (att, item_name)
if att_item not in TUNING_ITEMS_LST:
continue
if tuning_space.query_item_option((op_name, op_type), op_quant_mode, att_item, item_val):
dynamic_state[att_item] = item_val
else:
quant_mode_item = tuning_space.query_quant_mode_item((op_name, op_type), op_quant_mode)
tuning_item = quant_mode_item.get_option_by_name(att_item)
dynamic_state[att_item] = tuning_item.options[0] if tuning_item else None
return OpTuningConfig(op_name, op_type, op_quant_mode, tuning_space, kwargs=dynamic_state)
27 changes: 16 additions & 11 deletions neural_compressor/strategy/strategy.py
Original file line number Diff line number Diff line change
Expand Up @@ -291,7 +291,7 @@ def _remove_redundant_qmodel(self):
self.best_qmodel = None

def _can_create_eval_func_from_cfg(self):
"""Determines whether an eval function can be created from cfg.
"""Determine whether an eval function can be created from cfg.
Returns:
Returns True if the eval func can be created from config, False otherwise.
Expand Down Expand Up @@ -432,20 +432,24 @@ def initial_tuning_cfg(self):
quant_mode_wise_items (OrderedDict): key is quant_mode/precision; value is item list.
initial_op_tuning_cfg (OrderedDict): key is (op_name, op_type); value is the initialized tuning config.
"""
from .utils.constant import auto_query_order, static_query_order, dynamic_query_order
from .utils.tuning_space import initial_tuning_cfg_with_quant_mode
if self.cfg.quantization.approach == 'post_training_auto_quant':
query_order = ['static', 'dynamic', 'bf16', 'fp32']
query_order = auto_query_order
elif self.cfg.quantization.approach == 'post_training_dynamic_quant':
query_order = ['dynamic', 'bf16', 'fp32']
query_order = dynamic_query_order
elif self.cfg.quantization.approach == 'post_training_static_quant':
query_order = ['static', 'bf16', 'fp32']
query_order = static_query_order
elif self.cfg.quantization.approach == 'quant_aware_training':
query_order = ['static', 'dynamic', 'bf16', 'fp32']
logger.info("!!! Currently, the qat tuning is not supported by strategy.")
query_order = auto_query_order

quant_mode_wise_items = OrderedDict()
quant_mode_wise_items = OrderedDict() # mode, op_item_lst
pre_items = set()
# Collect op items supported the specified mode.
for quant_mode in query_order:
items = self.tuning_space.query_items_by_quant_mode(quant_mode)
filtered_items = [item for item in items if item not in pre_items]
filtered_items = list(filter(lambda item: item not in pre_items, items))
pre_items = pre_items.union(set(items))
quant_mode_wise_items[quant_mode] = filtered_items

Expand All @@ -456,11 +460,12 @@ def initial_op_quant_mode(items_lst, target_quant_mode, op_item_dtype_dict):
op_item_dtype_dict = OrderedDict()
for quant_mode, quant_mode_items in quant_mode_wise_items.items():
initial_op_quant_mode(quant_mode_items, quant_mode, op_item_dtype_dict)

initial_op_tuning_cfg = {}
for op_name_dtype, quant_mode in op_item_dtype_dict.items():
initial_op_tuning_cfg[op_name_dtype] = OpTuningConfig(op_name_dtype[0], op_name_dtype[1],
quant_mode, self.tuning_space)
for op_name_type, quant_mode in op_item_dtype_dict.items():
initial_op_tuning_cfg[op_name_type] = initial_tuning_cfg_with_quant_mode(op_name_type,
quant_mode,
self.tuning_space)
return op_item_dtype_dict, quant_mode_wise_items, initial_op_tuning_cfg

def show_baseline_info(self):
Expand Down
31 changes: 31 additions & 0 deletions neural_compressor/strategy/utils/constant.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,31 @@
#!/usr/bin/env python
# -*- coding: utf-8 -*-
#
# Copyright (c) 2023 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Strategy constant."""

PRECISION_SET = {'bf16', 'fp16' , 'fp32',}
QUANT_MODE_SET = {'static', 'dynamic'}
QUNAT_BIT_SET = {'int8', 'uint8', 'int4', 'uint4'}

TUNING_ITEMS_LST = [('activation','scheme'), ('activation','algorithm'), ('activation','granularity'),
('weight','scheme'), ('weight','algorithm'), ('weight','granularity'), 'sampling_size']

PRECISION_SET_V2_0 = {'fp32', 'bf16'}

auto_query_order = ['static', 'dynamic', 'bf16', 'fp16', 'fp32']
static_query_order = ['static', 'bf16', 'fp16', 'fp32']
dynamic_query_order = ['dynamic', 'bf16', 'fp16', 'fp32']
Loading

0 comments on commit d0059c4

Please sign in to comment.