Skip to content

Commit

Permalink
Enable GPTQ for LLM quantization (#1045)
Browse files Browse the repository at this point in the history
Signed-off-by: YIYANGCAI <[email protected]>
  • Loading branch information
YIYANGCAI authored Jul 18, 2023
1 parent f10e263 commit b5ac3c4
Show file tree
Hide file tree
Showing 5 changed files with 710 additions and 3 deletions.
19 changes: 17 additions & 2 deletions neural_compressor/adaptor/pytorch.py
Original file line number Diff line number Diff line change
Expand Up @@ -4519,7 +4519,6 @@ def quantize(self, tune_cfg, model, dataloader, calib_func=None):
else:
algorithm = config['weight']['algorithm']
all_algo.add(algorithm)

if 'GPTQ' in all_algo:
q_model._model = self.gptq_quantize(q_model._model, tune_cfg, dataloader)

Expand Down Expand Up @@ -4555,10 +4554,26 @@ def rtn_quantize(self, model, tune_cfg):

def gptq_quantize(self, model, tune_cfg, dataloader):
logger.debug("quantizing with the GPTQ algorithm")
from .torch_utils.weight_only import gptq_quantize
if 'gptq_args' in self.recipes:
percdamp = self.recipes['gptq_args'].get('percdamp', 0.01)
wbits = self.recipes.get('wbits', 4)
group_size = self.recipes.get('group_size', 128)
sym = self.recipes.get('scheme', False)
# implementation of gptq
# GPTQ(model, dataloader, w_bit, group_size, percdamp=0.01)
# TODO: implementation
weight_config = {
'wbits': wbits,
'group_size': group_size,
'sym': sym,
'percdamp': percdamp
}
model = gptq_quantize(
model,
weight_config,
dataloader,
self.device
)
return model

def awq_quantize(self, model, tune_cfg, dataloader, calib_func):
Expand Down
Loading

0 comments on commit b5ac3c4

Please sign in to comment.