Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Orca: Add 2 NCF PyTorch examples with data_loader or XShards as inputs. #5691

Merged
merged 77 commits into from
Nov 3, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
77 commits
Select commit Hold shift + click to select a range
84e2887
Add files via upload
zpeng1898 Sep 7, 2022
45a0b16
Merge branch 'intel-analytics:main' into zypbranch
zpeng1898 Sep 8, 2022
64e9826
Delete backend_ray.py
zpeng1898 Sep 8, 2022
617eb05
Delete backend_spark.py
zpeng1898 Sep 8, 2022
dcae8fb
Delete model.py
zpeng1898 Sep 8, 2022
bd1b747
Add files via upload
zpeng1898 Sep 8, 2022
ec2085d
Merge branch 'intel-analytics:main' into zypbranch
zpeng1898 Sep 9, 2022
7a9734c
Delete train_xshards.py
zpeng1898 Sep 9, 2022
35d4abc
Add files via upload
zpeng1898 Sep 9, 2022
c7a1302
Delete train_data_loader.py
zpeng1898 Sep 13, 2022
616ae22
Merge branch 'intel-analytics:main' into zypbranch
zpeng1898 Sep 13, 2022
995fb38
Delete train_xshards.py
zpeng1898 Sep 13, 2022
89af496
Add files via upload
zpeng1898 Sep 13, 2022
2dd3145
Add files via upload
zpeng1898 Sep 13, 2022
01a15b6
Delete train_data_loader.py
zpeng1898 Sep 14, 2022
c023cad
Delete train_xshards.py
zpeng1898 Sep 14, 2022
4fb75d3
Merge branch 'intel-analytics:main' into zypbranch
zpeng1898 Sep 15, 2022
4a12f12
Add files via upload
zpeng1898 Sep 15, 2022
c307b67
Merge branch 'intel-analytics:main' into zypbranch
zpeng1898 Sep 15, 2022
98a5704
Update train_xshards.py
zpeng1898 Sep 15, 2022
c3e38a8
Update train_xshards.py
zpeng1898 Sep 15, 2022
d161990
Merge branch 'intel-analytics:main' into zypbranch
zpeng1898 Sep 16, 2022
84eef4e
Update __init__.py
zpeng1898 Sep 16, 2022
2d9f565
Update preprocessing.py
zpeng1898 Sep 16, 2022
7eae073
Add files via upload
zpeng1898 Sep 16, 2022
6ce1214
Merge branch 'intel-analytics:main' into zypbranch
zpeng1898 Sep 19, 2022
2501d73
Update __init__.py
zpeng1898 Sep 19, 2022
36129c1
Update preprocessing.py
zpeng1898 Sep 19, 2022
cadffaa
Delete train_xshards_add_features.py
zpeng1898 Sep 19, 2022
3192856
Update train_data_loader.py
zpeng1898 Sep 19, 2022
987c631
Update train_xshards.py
zpeng1898 Sep 19, 2022
c38600f
Update model.py
zpeng1898 Sep 19, 2022
2f7acfa
Update train_xshards.py
zpeng1898 Sep 19, 2022
50cee71
Update test_spark_backend.py
zpeng1898 Sep 19, 2022
0e9d396
Update train_xshards.py
zpeng1898 Sep 19, 2022
72facb9
Update train_data_loader.py
zpeng1898 Sep 19, 2022
05f8ee6
Merge branch 'intel-analytics:main' into zypbranch
zpeng1898 Sep 19, 2022
11a7681
Delete test_spark_backend.py
zpeng1898 Sep 20, 2022
caec95e
Add files via upload
zpeng1898 Sep 20, 2022
f84dee8
Update model.py
zpeng1898 Sep 22, 2022
c60a99e
Update model.py
zpeng1898 Sep 26, 2022
447f22c
Update train_xshards.py
zpeng1898 Sep 26, 2022
88448d2
Update train_data_loader.py
zpeng1898 Sep 26, 2022
8c31003
Update train_data_loader.py
zpeng1898 Sep 26, 2022
602a6b2
Update train_xshards.py
zpeng1898 Sep 26, 2022
5bc8227
Merge branch 'intel-analytics:main' into zypbranch
zpeng1898 Sep 26, 2022
780dc59
Update model.py
zpeng1898 Sep 26, 2022
a08de8e
Update train_data_loader.py
zpeng1898 Sep 26, 2022
9248258
Update train_xshards.py
zpeng1898 Sep 26, 2022
94ee598
Update train_data_loader.py
zpeng1898 Sep 27, 2022
0b72cbf
Update train_xshards.py
zpeng1898 Sep 27, 2022
e2e0c8e
Update train_data_loader.py
zpeng1898 Sep 27, 2022
d117ca9
Update train_xshards.py
zpeng1898 Sep 27, 2022
036b41f
Create model.py
zpeng1898 Sep 30, 2022
0d99df2
Update train_data_loader.py
zpeng1898 Sep 30, 2022
d7d07ed
Update train_xshards.py
zpeng1898 Sep 30, 2022
222d984
Update model.py
zpeng1898 Oct 11, 2022
bc983d1
Update train_data_loader.py
zpeng1898 Oct 11, 2022
f028a29
Update train_xshards.py
zpeng1898 Oct 11, 2022
0654723
Update train_xshards.py
zpeng1898 Oct 11, 2022
70c794d
Update train_xshards.py
zpeng1898 Oct 11, 2022
29762f3
Update train_xshards.py
zpeng1898 Oct 13, 2022
b9f4835
Update train_data_loader.py
zpeng1898 Oct 13, 2022
0b6964a
Update model.py
zpeng1898 Oct 13, 2022
eaa0623
Update train_xshards.py
zpeng1898 Oct 21, 2022
fc86575
Update train_data_loader.py
zpeng1898 Oct 21, 2022
dc6bea6
Update model.py
zpeng1898 Oct 21, 2022
328bea3
Update train_data_loader.py
zpeng1898 Oct 21, 2022
63e7278
Update train_xshards.py
zpeng1898 Oct 21, 2022
4854b52
Update train_data_loader.py
zpeng1898 Oct 25, 2022
05a6dd5
Update train_data_loader.py
zpeng1898 Oct 28, 2022
6330bb9
Update model.py
zpeng1898 Nov 3, 2022
cd47319
Update train_data_loader.py
zpeng1898 Nov 3, 2022
85b8fe0
Update train_xshards.py
zpeng1898 Nov 3, 2022
84b5c61
Update model.py
zpeng1898 Nov 3, 2022
15bd60e
Update train_data_loader.py
zpeng1898 Nov 3, 2022
8fd7f9f
Update train_xshards.py
zpeng1898 Nov 3, 2022
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
128 changes: 128 additions & 0 deletions python/orca/tutorial/pytorch/NCF/model.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,128 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
# Most of the pytorch code is adapted from guoyang9's NCF implementation for
# ml-1m dataset.
# https://github.com/guoyang9/NCF
#
hkvision marked this conversation as resolved.
Show resolved Hide resolved

import numpy as np
import torch
import torch.nn as nn


class NCF(nn.Module):
def __init__(self, user_num, item_num, factor_num, num_layers,
dropout, model, GMF_model=None, MLP_model=None):
super(NCF, self).__init__()
"""
user_num: number of users;
item_num: number of items;
factor_num: number of predictive factors;
num_layers: the number of layers in MLP model;
dropout: dropout rate between fully connected layers;
model: 'MLP', 'GMF', 'NeuMF-end', and 'NeuMF-pre';
GMF_model: pre-trained GMF weights;
MLP_model: pre-trained MLP weights;
"""
self.dropout = dropout
self.model = model
self.GMF_model = GMF_model
self.MLP_model = MLP_model

self.embed_user_GMF = nn.Embedding(user_num, factor_num)
self.embed_item_GMF = nn.Embedding(item_num, factor_num)
self.embed_user_MLP = nn.Embedding(user_num,
factor_num * (2 ** (num_layers - 1)))
self.embed_item_MLP = nn.Embedding(item_num,
factor_num * (2 ** (num_layers - 1)))

MLP_modules = []
for i in range(num_layers):
input_size = factor_num * (2 ** (num_layers - i))
MLP_modules.append(nn.Dropout(p=self.dropout))
MLP_modules.append(nn.Linear(input_size, input_size//2))
MLP_modules.append(nn.ReLU())
self.MLP_layers = nn.Sequential(*MLP_modules)

if self.model in ['MLP', 'GMF']:
predict_size = factor_num
else:
predict_size = factor_num * 2
output_modules = []
output_modules.append(nn.Linear(predict_size, 1))
output_modules.append(nn.Sigmoid())
self.predict_layer = nn.Sequential(*output_modules)

self._init_weight_()

def _init_weight_(self):
""" We leave the weights initialization here. """
if not self.model == 'NeuMF-pre':
nn.init.normal_(self.embed_user_GMF.weight, std=0.01)
nn.init.normal_(self.embed_user_MLP.weight, std=0.01)
nn.init.normal_(self.embed_item_GMF.weight, std=0.01)
nn.init.normal_(self.embed_item_MLP.weight, std=0.01)

for m in self.MLP_layers:
if isinstance(m, nn.Linear):
nn.init.xavier_uniform_(m.weight)

for m in self.modules():
if isinstance(m, nn.Linear) and m.bias is not None:
m.bias.data.zero_()
else:
# embedding layers
self.embed_user_GMF.weight.data.copy_(self.GMF_model.embed_user_GMF.weight)
self.embed_item_GMF.weight.data.copy_(self.GMF_model.embed_item_GMF.weight)
self.embed_user_MLP.weight.data.copy_(self.MLP_model.embed_user_MLP.weight)
self.embed_item_MLP.weight.data.copy_(self.MLP_model.embed_item_MLP.weight)

# mlp layers
for (m1, m2) in zip(self.MLP_layers, self.MLP_model.MLP_layers):
if isinstance(m1, nn.Linear) and isinstance(m2, nn.Linear):
m1.weight.data.copy_(m2.weight)
m1.bias.data.copy_(m2.bias)

# predict layers
predict_weight = torch.cat([
self.GMF_model.predict_layer.weight,
self.MLP_model.predict_layer.weight], dim=1)
precit_bias = self.GMF_model.predict_layer.bias + \
self.MLP_model.predict_layer.bias

self.predict_layer.weight.data.copy_(0.5 * predict_weight)
self.predict_layer.bias.data.copy_(0.5 * precit_bias)

def forward(self, user, item):
if not self.model == 'MLP':
embed_user_GMF = self.embed_user_GMF(user)
embed_item_GMF = self.embed_item_GMF(item)
output_GMF = embed_user_GMF * embed_item_GMF
if not self.model == 'GMF':
embed_user_MLP = self.embed_user_MLP(user)
embed_item_MLP = self.embed_item_MLP(item)
interaction = torch.cat((embed_user_MLP, embed_item_MLP), -1)
output_MLP = self.MLP_layers(interaction)

if self.model == 'GMF':
concat = output_GMF
elif self.model == 'MLP':
concat = output_MLP
else:
concat = torch.cat((output_GMF, output_MLP), -1)

prediction = self.predict_layer(concat)
return prediction.view(-1)
192 changes: 192 additions & 0 deletions python/orca/tutorial/pytorch/NCF/train_data_loader.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,192 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
# Most of the pytorch code is adapted from guoyang9's NCF implementation for
# ml-1m dataset.
# https://github.com/guoyang9/NCF
#

import numpy as np
import pandas as pd
from bigdl.dllib.utils.log4Error import *

# Step 1: Init Orca Context

from bigdl.orca import init_orca_context, stop_orca_context
init_orca_context()

# Step 2: Define Train Dataset

from sklearn.model_selection import train_test_split
import torch.utils.data as data


class NCFData(data.Dataset):
def __init__(self, data):
self.data = data.values.tolist()

def __len__(self):
return len(self.data)

def __getitem__(self, idx):
user = int(self.data[idx][0])
item = int(self.data[idx][1])
label = float(self.data[idx][2])
return user, item, label


def train_loader_func(config, batch_size):
data_X = pd.read_csv(
"ml-1m/ratings.dat",
sep="::", header=None, names=['user', 'item'],
usecols=[0, 1], dtype={0: np.int64, 1: np.int64})
user_num = data_X['user'].max() + 1
item_num = data_X['item'].max() + 1

features_ps = data_X.values.tolist()

# load ratings as a dok matrix
import scipy.sparse as sp
train_mat = sp.dok_matrix((user_num, item_num), dtype=np.int64)
for x in features_ps:
train_mat[x[0], x[1]] = 1

# sample negative items for training datasets
np.random.seed(0)
features_ng = []
for x in features_ps:
u = x[0]
for t in range(4):
j = np.random.randint(item_num)
while (u, j) in train_mat:
j = np.random.randint(item_num)
features_ng.append([u, j])
features = features_ps + features_ng
labels_ps = [1 for _ in range(len(features_ps))]
labels_ng = [0 for _ in range(len(features_ng))]
labels = labels_ps + labels_ng
data_X = pd.DataFrame(features, columns=["user", "item"], dtype=np.int64)
data_X["label"] = labels

# train test split
data_X = data_X.values.tolist()
train_data, _ = train_test_split(data_X, test_size=0.2, random_state=100)
train_data = pd.DataFrame(train_data, columns=["user", "item", "label"], dtype=np.int64)
train_data["label"] = train_data["label"].astype(np.float)

train_dataset = NCFData(train_data)
train_loader = data.DataLoader(train_dataset, batch_size=batch_size,
shuffle=True, num_workers=0)
return train_loader


def test_loader_func(config, batch_size):
data_X = pd.read_csv(
"ml-1m/ratings.dat",
sep="::", header=None, names=['user', 'item'],
usecols=[0, 1], dtype={0: np.int64, 1: np.int64})
user_num = data_X['user'].max() + 1
item_num = data_X['item'].max() + 1

features_ps = data_X.values.tolist()

# load ratings as a dok matrix
import scipy.sparse as sp
train_mat = sp.dok_matrix((user_num, item_num), dtype=np.int64)
for x in features_ps:
train_mat[x[0], x[1]] = 1

# sample negative items for training datasets
np.random.seed(0)
features_ng = []
for x in features_ps:
u = x[0]
for t in range(4):
j = np.random.randint(item_num)
while (u, j) in train_mat:
j = np.random.randint(item_num)
features_ng.append([u, j])
features = features_ps + features_ng
labels_ps = [1 for _ in range(len(features_ps))]
labels_ng = [0 for _ in range(len(features_ng))]
labels = labels_ps + labels_ng
data_X = pd.DataFrame(features, columns=["user", "item"], dtype=np.int64)
data_X["label"] = labels

# train test split
data_X = data_X.values.tolist()
_, test_data = train_test_split(data_X, test_size=0.2, random_state=100)
test_data = pd.DataFrame(test_data, columns=["user", "item", "label"], dtype=np.int64)
test_data["label"] = test_data["label"].astype(np.float)

test_dataset = NCFData(test_data)
test_loader = data.DataLoader(test_dataset, batch_size=batch_size,
shuffle=False, num_workers=0)
return test_loader

# Step 3: Define the Model

from model import NCF
import torch.nn as nn
import torch.optim as optim


def model_creator(config):
data_X = pd.read_csv(
"ml-1m/ratings.dat",
sep="::", header=None, names=['user', 'item'],
usecols=[0, 1], dtype={0: np.int64, 1: np.int64})
user_num = data_X['user'].max() + 1
item_num = data_X['item'].max() + 1

model = NCF(user_num, item_num,
factor_num=32, num_layers=3, dropout=0.0, model="NeuMF-end")
model.train()
hkvision marked this conversation as resolved.
Show resolved Hide resolved
return model


def optimizer_creator(model, config):
return optim.Adam(model.parameters(), lr=0.001)

loss_function = nn.BCEWithLogitsLoss()

# Step 4: Fit with Orca Estimator

from bigdl.orca.learn.pytorch import Estimator
from bigdl.orca.learn.metrics import Accuracy, Precision, Recall

# Create the estimator
backend = "ray" # "ray" or "spark"
est = Estimator.from_torch(model=model_creator, optimizer=optimizer_creator,
loss=loss_function, metrics=[Accuracy(), Precision(), Recall()],
backend=backend)

# Fit the estimator
batch_size = 1024
est.fit(data=train_loader_func, epochs=10, batch_size=batch_size)

# Step 5: Save and Load the Model

# Evaluate the model
result = est.evaluate(data=test_loader_func, batch_size=batch_size)
print('Evaluate results:')
for r in result:
print(r, ":", result[r])

# Save the model
est.save("NCF_model")

# Stop orca context when program finishes
stop_orca_context()
Loading