Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add more data types in convert DataFrame to numpy #5680

Merged
merged 8 commits into from
Sep 13, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
16 changes: 15 additions & 1 deletion python/dllib/src/bigdl/dllib/utils/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -210,19 +210,33 @@ def convert_for_cols(row, cols):
if _is_scalar_type(feature_type, accept_str_col):
if isinstance(feature_type, df_types.FloatType):
result.append(np.array(row[name]).astype(np.float32))
elif isinstance(feature_type, df_types.DoubleType):
result.append(np.array(row[name]).astype(np.float64))
elif isinstance(feature_type, df_types.TimestampType):
result.append(np.array(row[name]).astype('datetime64[ns]'))
elif isinstance(feature_type, df_types.IntegerType):
result.append(np.array(row[name]).astype(np.int32))
elif isinstance(feature_type, df_types.LongType):
result.append(np.array(row[name]).astype(np.int64))
elif isinstance(feature_type, df_types.DecimalType):
result.append(np.array(row[name]).astype(np.float64))
else:
result.append(np.array(row[name]))
elif isinstance(feature_type, df_types.ArrayType):
if accept_str_col and isinstance(feature_type.elementType, df_types.StringType):
result.append(np.array(row[name]).astype(np.str))
else:
elif isinstance(feature_type.elementType, df_types.FloatType):
result.append(np.array(row[name]).astype(np.float32))
elif isinstance(feature_type.elementType, df_types.DoubleType):
result.append(np.array(row[name]).astype(np.float64))
elif isinstance(feature_type.elementType, df_types.IntegerType):
result.append(np.array(row[name]).astype(np.int32))
elif isinstance(feature_type.elementType, df_types.LongType):
result.append(np.array(row[name]).astype(np.int64))
elif isinstance(feature_type.elementType, df_types.DecimalType):
result.append(np.array(row[name]).astype(np.float64))
else:
result.append(np.array(row[name]))
elif isinstance(row[name], DenseVector):
result.append(row[name].values.astype(np.float32))
else:
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -22,6 +22,9 @@
import torch
import torch.nn as nn

from pyspark.sql import SparkSession
from pyspark.sql.types import FloatType, ArrayType, StructType, StructField

from bigdl.orca import OrcaContext
from bigdl.orca.data.pandas import read_csv
from bigdl.orca.learn.metrics import Accuracy
Expand Down Expand Up @@ -138,7 +141,7 @@ def on_train_end(self, logs=None):
assert self.model

def on_epoch_end(self, epoch, logs=None):
assert "train_loss" in logs
assert "train_loss" in logs
assert "val_loss" in logs
assert self.model

Expand Down Expand Up @@ -233,10 +236,17 @@ def test_spark_xshards(self):
def test_dataframe_train_eval(self):

sc = init_nncontext()
spark = SparkSession.builder.getOrCreate()
rdd = sc.range(0, 100)
df = rdd.map(lambda x: (np.random.randn(50).astype(np.float).tolist(),
[int(np.random.randint(0, 2, size=()))])
).toDF(["feature", "label"])
data = rdd.map(lambda x: (np.random.randn(50).astype(np.float).tolist(),
[float(np.random.randint(0, 2, size=()))])
)
schema = StructType([
StructField("feature", ArrayType(FloatType()), True),
StructField("label", ArrayType(FloatType()), True)
])

df = spark.createDataFrame(data=data, schema=schema)

estimator = get_estimator(workers_per_node=2, model_dir=self.model_dir)
estimator.fit(df, batch_size=4, epochs=2,
Expand All @@ -252,10 +262,16 @@ def test_dataframe_shard_size_train_eval(self):
from bigdl.orca import OrcaContext
OrcaContext._shard_size = 30
sc = init_nncontext()
spark = SparkSession.builder.getOrCreate()
rdd = sc.range(0, 100)
df = rdd.map(lambda x: (np.random.randn(50).astype(np.float).tolist(),
[int(np.random.randint(0, 2, size=()))])
).toDF(["feature", "label"])
data = rdd.map(lambda x: (np.random.randn(50).astype(np.float).tolist(),
[float(np.random.randint(0, 2, size=()))])
)
schema = StructType([
StructField("feature", ArrayType(FloatType()), True),
StructField("label", ArrayType(FloatType()), True)
])
df = spark.createDataFrame(data=data, schema=schema)

estimator = get_estimator(workers_per_node=2, model_dir=self.model_dir)
estimator.fit(df, batch_size=4, epochs=2,
Expand All @@ -267,10 +283,17 @@ def test_dataframe_shard_size_train_eval(self):

def test_partition_num_less_than_workers(self):
sc = init_nncontext()
spark = SparkSession.builder.getOrCreate()
rdd = sc.range(200, numSlices=1)
df = rdd.map(lambda x: (np.random.randn(50).astype(np.float).tolist(),
[int(np.random.randint(0, 2, size=()))])
).toDF(["feature", "label"])
data = rdd.map(lambda x: (np.random.randn(50).astype(np.float).tolist(),
[float(np.random.randint(0, 2, size=()))])
)
schema = StructType([
StructField("feature", ArrayType(FloatType()), True),
StructField("label", ArrayType(FloatType()), True)
])

df = spark.createDataFrame(data=data, schema=schema)

estimator = get_estimator(workers_per_node=2, model_dir=self.model_dir)
assert df.rdd.getNumPartitions() < estimator.num_workers
Expand Down Expand Up @@ -303,7 +326,7 @@ def test_dataframe_predict(self):
def test_xshards_predict_save_load(self):

sc = init_nncontext()
rdd = sc.range(0, 110).map(lambda x: np.array([x]*50))
rdd = sc.range(0, 110).map(lambda x: np.array([x] * 50))
shards = rdd.mapPartitions(lambda iter: chunks(iter, 5)).map(lambda x: {"x": np.stack(x)})
shards = SparkXShards(shards)

Expand Down Expand Up @@ -352,10 +375,17 @@ def test_multiple_inputs_model(self):
rdd = sc.parallelize(range(100))

from pyspark.sql import SparkSession
spark = SparkSession(sc)
df = rdd.map(lambda x: ([float(x)] * 25, [float(x)] * 25,
[int(np.random.randint(0, 2, size=()))])
).toDF(["f1", "f2", "label"])
spark = SparkSession.builder.getOrCreate()
data = rdd.map(lambda x: ([float(x)] * 25, [float(x)] * 25,
[float(np.random.randint(0, 2, size=()))])
)
schema = StructType([
StructField("f1", ArrayType(FloatType()), True),
StructField("f2", ArrayType(FloatType()), True),
StructField("label", ArrayType(FloatType()), True)
])

df = spark.createDataFrame(data=data, schema=schema)

estimator = get_estimator(workers_per_node=2,
model_fn=lambda config: MultiInputNet(),
Expand All @@ -373,6 +403,7 @@ def test_multiple_inputs_model(self):

def test_data_parallel_sgd_correctness(self):
sc = init_nncontext()
spark = SparkSession.builder.getOrCreate()
rdd = sc.range(0, 100).repartition(2)

# partition 0: [(0, 0), (0, 0)]
Expand All @@ -390,8 +421,12 @@ def test_data_parallel_sgd_correctness(self):
# partition 1 loss: 0.25
# avg_grad = avg([0, 0, 1, 1]) = 0.5
# weight = 0.5 - 0.5 * avg_grad = 0.25
df = rdd.mapPartitionsWithIndex(lambda idx, iter: [([float(idx)], [0.0]) for _ in iter][:2]
).toDF(["feature", "label"])
data = rdd.mapPartitionsWithIndex(lambda idx, iter: [([float(idx)], [0.0]) for _ in iter][:2])
schema = StructType([
StructField("feature", ArrayType(FloatType()), True),
StructField("label", ArrayType(FloatType()), True)
])
df = spark.createDataFrame(data=data, schema=schema)

def get_optimizer(model, config):
return torch.optim.SGD(model.parameters(), lr=0.5)
Expand All @@ -418,11 +453,17 @@ def get_optimizer(model, config):
def test_checkpoint_callback(self):
from bigdl.orca.learn.pytorch.callbacks.model_checkpoint import ModelCheckpoint
sc = OrcaContext.get_spark_context()
spark = SparkSession.builder.getOrCreate()
rdd = sc.range(0, 100)
epochs = 2
df = rdd.map(lambda x: (np.random.randn(50).astype(np.float).tolist(),
[int(np.random.randint(0, 2, size=()))])
).toDF(["feature", "label"])
data = rdd.map(lambda x: (np.random.randn(50).astype(np.float).tolist(),
[float(np.random.randint(0, 2, size=()))])
)
schema = StructType([
StructField("feature", ArrayType(FloatType()), True),
StructField("label", ArrayType(FloatType()), True)
])
df = spark.createDataFrame(data=data, schema=schema)
df = df.cache()

estimator = get_estimator(workers_per_node=2, model_dir=self.model_dir,
Expand All @@ -446,7 +487,7 @@ def test_checkpoint_callback(self):
latest_checkpoint_path = Estimator.latest_checkpoint(self.model_dir)
assert os.path.isfile(latest_checkpoint_path)
estimator.shutdown()
new_estimator = get_estimator(workers_per_node=2, model_dir=self.model_dir,
new_estimator = get_estimator(workers_per_node=2, model_dir=self.model_dir,
log_level=logging.DEBUG)
new_estimator.load_checkpoint(latest_checkpoint_path)
eval_after = new_estimator.evaluate(df, batch_size=4,
Expand All @@ -459,11 +500,18 @@ def test_checkpoint_callback(self):

def test_manual_ckpt(self):
sc = OrcaContext.get_spark_context()
spark = SparkSession.builder.getOrCreate()
rdd = sc.range(0, 100)
epochs = 2
df = rdd.map(lambda x: (np.random.randn(50).astype(np.float).tolist(),
[int(np.random.randint(0, 2, size=()))])
).toDF(["feature", "label"])
data = rdd.map(lambda x: (np.random.randn(50).astype(np.float).tolist(),
[float(np.random.randint(0, 2, size=()))])
)
schema = StructType([
StructField("feature", ArrayType(FloatType()), True),
StructField("label", ArrayType(FloatType()), True)
])

df = spark.createDataFrame(data=data, schema=schema)
df = df.cache()

estimator = get_estimator(workers_per_node=2, model_dir=self.model_dir,
Expand Down Expand Up @@ -494,7 +542,7 @@ def test_manual_ckpt(self):
def test_custom_callback(self):
estimator = get_estimator(workers_per_node=2, model_dir=self.model_dir)
callbacks = [CustomCallback()]
estimator.fit(train_data_loader, epochs=4, batch_size=128,
estimator.fit(train_data_loader, epochs=4, batch_size=128,
validation_data=val_data_loader, callbacks=callbacks)


Expand Down
Loading