Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

remove bmm, which is only required in ipex 2.0 #12630

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 2 additions & 4 deletions docs/mddocs/PythonAPI/optimize.md
Original file line number Diff line number Diff line change
Expand Up @@ -3,7 +3,7 @@
## Optimize Model
You can run any PyTorch model with `optimize_model` through only one-line code change to benefit from IPEX-LLM optimization, regardless of the library or API you are using.

### `ipex_llm.optimize_model`_`(model, low_bit='sym_int4', optimize_llm=True, modules_to_not_convert=None, cpu_embedding=False, lightweight_bmm=False, **kwargs)`_
### `ipex_llm.optimize_model`_`(model, low_bit='sym_int4', optimize_llm=True, modules_to_not_convert=None, cpu_embedding=False, **kwargs)`_

A method to optimize any pytorch model.

Expand All @@ -19,8 +19,6 @@ A method to optimize any pytorch model.

- **cpu_embedding**: Whether to replace the Embedding layer, may need to set it to `True` when running IPEX-LLM on GPU. Default to be `False`.

- **lightweight_bmm**: Whether to replace the `torch.bmm` ops, may need to set it to `True` when running IPEX-LLM on GPU on Windows. Default to be `False`.

- **Returns**: The optimized model.

- **Example**:
Expand Down Expand Up @@ -76,4 +74,4 @@ Load the optimized pytorch model.
from ipex_llm.optimize import load_low_bit
model = whisper.load_model('tiny') # A model instance through traditional loading method
model = load_low_bit(model, saved_dir) # Load the optimized model
```
```
6 changes: 2 additions & 4 deletions docs/mddocs/PythonAPI/transformers.md
Original file line number Diff line number Diff line change
Expand Up @@ -29,8 +29,6 @@ Three new arguments are added to extend Hugging Face’s from_pretrained method

- **cpu_embedding**: Whether to replace the Embedding layer, may need to set it to `True` when running IPEX-LLM on GPU. Default to be `False`.

- **lightweight_bmm**: Whether to replace the torch.bmm ops, may need to set it to `True` when running IPEX-LLM on GPU on Windows. Default to be `False`.

- **imatrix**: `str` value, represent filename of importance matrix pretrained on specific datasets for use with the improved quantization methods recently added to llama.cpp.

- **model_hub**: `str` value, options are `'huggingface'` and `'modelscope'`, specify the model hub. Default to be `'huggingface'`.
Expand All @@ -48,7 +46,7 @@ Three new arguments are added to extend Hugging Face’s from_pretrained method
Load gguf model and tokenizer and convert it to bigdl-llm model and huggingface tokenzier

- **Parameters**:

- **fpath**: Path to gguf model file

- **optimize_model**: Whether to further optimize llm model, defaults to `True`
Expand All @@ -64,7 +62,7 @@ Load gguf model and tokenizer and convert it to bigdl-llm model and huggingface
Load a low bit optimized model (including INT4, INT5 and INT8) from a saved ckpt.

- **Parameters**:

- **pretrained_model_name_or_path**: `str` value, Path to load the optimized model ckpt.

- **optimize_model**: `boolean` value, Whether to further optimize the low_bit llm model.
Expand Down
7 changes: 2 additions & 5 deletions python/llm/src/ipex_llm/optimize.py
Original file line number Diff line number Diff line change
Expand Up @@ -195,7 +195,7 @@ def load_low_bit(model, model_path):


def optimize_model(model, low_bit='sym_int4', optimize_llm=True, modules_to_not_convert=None,
cpu_embedding=False, lightweight_bmm=False, **kwargs):
cpu_embedding=False, **kwargs):
"""
A method to optimize any pytorch model.

Expand All @@ -211,8 +211,6 @@ def optimize_model(model, low_bit='sym_int4', optimize_llm=True, modules_to_not_
when conducting model optimizations. Default to be ``None``.
:param cpu_embedding: Whether to replace the Embedding layer, may need to set it
to ``True`` when running BigDL-LLM on GPU on Windows. Default to be ``False``.
:param lightweight_bmm: Whether to replace the torch.bmm ops, may need to set it
to ``True`` when running BigDL-LLM on GPU on Windows. Default to be ``False``.

:return: The optimized model.

Expand Down Expand Up @@ -256,8 +254,7 @@ def optimize_model(model, low_bit='sym_int4', optimize_llm=True, modules_to_not_
torch_dtype=torch_dtype,
optimize_model=optimize_llm,
modules_to_not_convert=modules_to_not_convert,
cpu_embedding=cpu_embedding,
lightweight_bmm=lightweight_bmm)
cpu_embedding=cpu_embedding)
# add save_low_bit to pretrained model dynamically
import types
model._bigdl_config = dict()
Expand Down
45 changes: 0 additions & 45 deletions python/llm/src/ipex_llm/transformers/bmm.py

This file was deleted.

28 changes: 7 additions & 21 deletions python/llm/src/ipex_llm/transformers/convert.py
Original file line number Diff line number Diff line change
Expand Up @@ -1078,7 +1078,7 @@ def ggml_convert_low_bit(model, qtype, optimize_model=True,
convert_shape_only=False, device="cpu",
modules_to_not_convert=None,
cpu_embedding=False,
lightweight_bmm=False, torch_dtype="auto",
torch_dtype="auto",
imatrix_data=None,
embedding_qtype=None,
mixed_precision=False):
Expand Down Expand Up @@ -1146,7 +1146,7 @@ def ggml_convert_low_bit(model, qtype, optimize_model=True,
pass

if optimize_model:
model = _optimize_post(model, lightweight_bmm)
model = _optimize_post(model)

if hasattr(model, "config") and hasattr(model.config, "model_type") and \
model.config.model_type == "qwen" and hasattr(model.config, "visual"):
Expand Down Expand Up @@ -1247,7 +1247,7 @@ def _optimize_ipex(model, qtype=ggml_tensor_qtype["bf16"]):
return _ipex_jit(model)


def _optimize_post(model, lightweight_bmm=False):
def _optimize_post(model):
try:
from diffusers import DiffusionPipeline, StableDiffusionXLPipeline
if isinstance(model, DiffusionPipeline):
Expand Down Expand Up @@ -1627,7 +1627,7 @@ def _optimize_post(model, lightweight_bmm=False):
vision_embedding._get_pos_embed = MethodType(_get_pos_embed, vision_embedding)
vision_module = importlib.import_module(vision_model.__class__.__module__)
convert_forward(vision_model, vision_module.InternAttention, intern_attention_forward)
_optimize_post(model.language_model, lightweight_bmm=lightweight_bmm)
_optimize_post(model.language_model)
elif model.config.model_type == "qwen":
if hasattr(model.config, "visual"):
# for Qwen-VL-Chat
Expand Down Expand Up @@ -1731,7 +1731,7 @@ def _optimize_post(model, lightweight_bmm=False):
module.Qwen2MoeSdpaAttention,
qwen2_attention_forward)
elif model.config.model_type == "qwen2_audio":
_optimize_post(model.language_model, lightweight_bmm=lightweight_bmm)
_optimize_post(model.language_model)
elif model.config.model_type == "qwen2_vl":
modeling_module_name = model.__class__.__module__
module = importlib.import_module(modeling_module_name)
Expand Down Expand Up @@ -1875,20 +1875,6 @@ def _optimize_post(model, lightweight_bmm=False):
modeling_module_name = model.__class__.__module__
module = importlib.import_module(modeling_module_name)
convert_forward(model, module.YiRMSNorm, rms_norm_forward)
elif model.config.model_type == "whisper" and lightweight_bmm:
if platform.system().lower() == 'windows':
from ipex_llm.transformers.bmm import SafeBMM
modeling_module_name = model.__class__.__module__
module = importlib.import_module(modeling_module_name)
old_fwd = module.WhisperAttention.forward

def safe_bmm_fwd(*args, **kwargs):
with SafeBMM():
return old_fwd(*args, **kwargs)

convert_forward(model,
module.WhisperAttention,
safe_bmm_fwd)
elif model.config.model_type == "rwkv":
# rwkv v4
modeling_module_name = model.__class__.__module__
Expand Down Expand Up @@ -2081,7 +2067,7 @@ def safe_bmm_fwd(*args, **kwargs):
elif model.config.hidden_size == 1536 and model.config.vocab_size == 73464:
# MiniCPM-V ?
model.llm.config.model_type = "minicpm"
_optimize_post(model.llm, lightweight_bmm=lightweight_bmm)
_optimize_post(model.llm)
model.llm.config.model_type = "minicpmv"

vpm_modeling_module_name = model.vpm.__class__.__module__
Expand Down Expand Up @@ -2135,7 +2121,7 @@ def safe_bmm_fwd(*args, **kwargs):
# llm
model.llm.config.model_type = "llama"
model.llm.config.rope_scaling = {"rope_type": "default"}
_optimize_post(model.llm, lightweight_bmm=lightweight_bmm)
_optimize_post(model.llm)
model.llm.config.model_type = "megrezo"

return model
6 changes: 0 additions & 6 deletions python/llm/src/ipex_llm/transformers/model.py
Original file line number Diff line number Diff line change
Expand Up @@ -147,8 +147,6 @@ def from_pretrained(cls,
to ``True`` when running BigDL-LLM on GPU on Windows. Default to be ``False``.
:param disk_embedding: Whether to put the Embedding layer on disk to save memory.
Default to be ``False``.
:param lightweight_bmm: Whether to replace the torch.bmm ops, may need to set it
to ``True`` when running BigDL-LLM on GPU on Windows. Default to be ``False``.
:param imatrix: str value, represent filename of importance matrix pretrained on
specific datasets for use with the improved quantization methods recently
added to llama.cpp.
Expand Down Expand Up @@ -441,7 +439,6 @@ def load_convert(cls, q_k, optimize_model, *args, **kwargs):
" please use cpu_embedding instead.", FutureWarning)
cpu_embedding = True
disk_embedding = kwargs.pop("disk_embedding", False)
lightweight_bmm = kwargs.pop("lightweight_bmm", False)
quant_config = kwargs.pop("quantization_config", None)
imatrix_data = kwargs.pop("imatrix_data", None)
embedding_qtype = kwargs.pop("embedding_qtype", None)
Expand Down Expand Up @@ -513,7 +510,6 @@ def load_convert(cls, q_k, optimize_model, *args, **kwargs):
model = ggml_convert_low_bit(model, qtype, optimize_model,
modules_to_not_convert=modules_to_not_convert,
cpu_embedding=cpu_embedding,
lightweight_bmm=lightweight_bmm,
torch_dtype=kwargs.get("torch_dtype", 'auto'),
imatrix_data=imatrix_data,
embedding_qtype=embedding_qtype,
Expand Down Expand Up @@ -576,7 +572,6 @@ def load_low_bit(cls,
" please use cpu_embedding instead.", FutureWarning)
cpu_embedding = True
disk_embedding = kwargs.pop("disk_embedding", False)
lightweight_bmm = kwargs.pop("lightweight_bmm", False)
# Autofactory
trust_remote_code = kwargs.pop("trust_remote_code", None)
kwargs_orig = copy.deepcopy(kwargs)
Expand Down Expand Up @@ -713,7 +708,6 @@ def load_low_bit(cls,
model = ggml_convert_low_bit(model, qtype, optimize_model, device=quant_device,
modules_to_not_convert=modules_to_not_convert,
cpu_embedding=cpu_embedding,
lightweight_bmm=lightweight_bmm,
embedding_qtype=embedding_qtype, torch_dtype=torch_dtype)

if is_sharded:
Expand Down
2 changes: 0 additions & 2 deletions python/llm/src/ipex_llm/transformers/npu_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -116,7 +116,6 @@ def from_pretrained(cls, *args, **kwargs):

# ignore following arguments
ignore_argument(kwargs, "model_hub")
ignore_argument(kwargs, "lightweight_bmm")
ignore_argument(kwargs, "load_in_4bit")
ignore_argument(kwargs, "load_in_8bit")
ignore_argument(kwargs, "imatrix")
Expand Down Expand Up @@ -365,7 +364,6 @@ def load_convert_cpu(cls, q_k, optimize_model, device, modules_to_not_convert,
def load_low_bit(cls, pretrained_model_name_or_path: str, *model_args, **kwargs):
# ignore following arguments
ignore_argument(kwargs, "model_hub")
ignore_argument(kwargs, "lightweight_bmm")
ignore_argument(kwargs, "cpu_embedding")
ignore_argument(kwargs, "embedding_qtype")
ignore_argument(kwargs, "speculative")
Expand Down
Loading