Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add qwen2-vl example #12606

Draft
wants to merge 1 commit into
base: main
Choose a base branch
from
Draft
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Empty file.
120 changes: 120 additions & 0 deletions python/llm/example/GPU/HuggingFace/Multimodal/qwen2-vl/generate.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,120 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

import torch
import time
import argparse
import numpy as np

from transformers import Qwen2VLForConditionalGeneration, AutoProcessor
from ipex_llm.transformers import Qwen2VLForConditionalGeneration
from qwen_vl_utils import process_vision_info
from ipex_llm import optimize_model


if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Predict Tokens using generate() API for Qwen2-VL-7B-Instruct model')
parser.add_argument('--repo-id-or-model-path', type=str, default="Qwen/Qwen2-VL-7B-Instruct",
help='The huggingface repo id for the Qwen2-VL model to be downloaded'
', or the path to the huggingface checkpoint folder')
parser.add_argument('--prompt', type=str, default="Describe this image.",
help='Prompt to infer')
parser.add_argument('--image-url-or-path', type=str,
default='http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg' ,
help='The URL or path to the image to infer')

parser.add_argument('--n-predict', type=int, default=32,
help='Max tokens to predict')
parser.add_argument('--modelscope', action="store_true", default=False,
help="Use models from modelscope")

args = parser.parse_args()
model_path = args.repo_id_or_model_path

model = Qwen2VLForConditionalGeneration.from_pretrained(model_path,
load_in_4bit=True,
trust_remote_code=True,
torch_dtype='auto',
low_cpu_mem_usage=True,
use_cache=True,)

model = optimize_model(model, low_bit='sym_int4', modules_to_not_convert=["visual"])

# Use .float() for better output, and use .half() for better speed
model = model.half().to("xpu")

# The following code for generation is adapted from https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct#quickstart

# The default range for the number of visual tokens per image in the model is 4-16384. You can set min_pixels and max_pixels according to your needs, such as a token count range of 256-1280, to balance speed and memory usage.
min_pixels = 256*28*28
max_pixels = 1280*28*28
processor = AutoProcessor.from_pretrained(model_path, min_pixels=min_pixels, max_pixels=max_pixels)

prompt = args.prompt
image_path = args.image_url_or_path

messages = [
{
"role": "user",
"content": [
{
"type": "image",
"image": image_path,
},
{"type": "text", "text": prompt},
],
}
]
text = processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
)
inputs = inputs.to('xpu')

with torch.inference_mode():
# warmup
generated_ids = model.generate(
**inputs,
max_new_tokens=args.n_predict
)

st = time.time()
generated_ids = model.generate(
**inputs,
max_new_tokens=args.n_predict
)
torch.xpu.synchronize()
end = time.time()
generated_ids = generated_ids.cpu()
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(inputs.input_ids, generated_ids)
]

response = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(f'Inference time: {end-st} s')
print('-'*20, 'Input Image', '-'*20)
print(image_path)
print('-'*20, 'Prompt', '-'*20)
print(prompt)
print('-'*20, 'Output', '-'*20)
print(response)
5 changes: 5 additions & 0 deletions python/llm/src/ipex_llm/transformers/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -21,5 +21,10 @@
AutoModelForSequenceClassification, AutoModelForMaskedLM, \
AutoModelForNextSentencePrediction, AutoModelForMultipleChoice, \
AutoModelForTokenClassification

import transformers
if transformers.__version__ >= '4.45.0':
from .model import Qwen2VLForConditionalGeneration

from .modelling_bigdl import *
from .pipeline_parallel import init_pipeline_parallel, PPModelWorker
4 changes: 4 additions & 0 deletions python/llm/src/ipex_llm/transformers/model.py
Original file line number Diff line number Diff line change
Expand Up @@ -839,3 +839,7 @@ class AutoModelForMultipleChoice(_BaseAutoModelClass):

class AutoModelForTokenClassification(_BaseAutoModelClass):
HF_Model = transformers.AutoModelForTokenClassification

if transformers.__version__ >= '4.45.0':
class Qwen2VLForConditionalGeneration(_BaseAutoModelClass):
HF_MODEL = transformers.Qwen2VLForConditionalGeneration
Loading