Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

refactor qwen2 and llama3 #12587

Merged
merged 1 commit into from
Dec 20, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 0 additions & 1 deletion python/llm/src/ipex_llm/transformers/models/bloom.py
Original file line number Diff line number Diff line change
Expand Up @@ -37,7 +37,6 @@
import torch
import torch.utils.checkpoint
from torch.nn import functional as F
from ipex_llm.transformers.models.utils import use_fused_layer_norm
from ipex_llm.transformers.models.utils import init_kv_cache, extend_kv_cache, append_kv_cache

import os
Expand Down
47 changes: 6 additions & 41 deletions python/llm/src/ipex_llm/transformers/models/llama32.py
Original file line number Diff line number Diff line change
Expand Up @@ -42,14 +42,12 @@
from typing import Optional, Tuple, Union
from transformers.cache_utils import Cache
from transformers.modeling_outputs import BaseModelOutputWithPast
from transformers.models.llama.modeling_llama import repeat_kv
from transformers.models.llama.modeling_llama import apply_rotary_pos_emb

from ipex_llm.utils.common import invalidInputError
from ipex_llm.transformers.models.common import attention_softmax
from ipex_llm.transformers.models.utils import use_sdp, use_sdp_causal
from ipex_llm.transformers.models.common import scaled_dot_product_attention
from ipex_llm.transformers.models.utils import should_use_fuse_rope
from ipex_llm.transformers.models.utils import use_quantize_kv_cache, restore_fp8_kv_cache
from ipex_llm.transformers.models.utils import use_quantize_kv_cache
from ipex_llm.transformers.models.utils import should_use_compresskv, \
is_enough_kv_cache_room_4_36
from ipex_llm.transformers.kv import DynamicNormalCache, DynamicFp8Cache, DynamicCompressCache, \
Expand Down Expand Up @@ -233,44 +231,11 @@ def llama_attention_forward(
key_states, value_states = past_key_value.update(key_states, value_states,
self.layer_idx, None)

kv_seq_len = key_states.size(2)
if attention_mask is not None: # no matter the length, we just slice it
causal_mask = attention_mask[:, :, :, :kv_seq_len]
else:
causal_mask = None

attn_weights = None
if use_sdp(q_len, kv_seq_len, self.head_dim, query_states):
import xe_addons
if isinstance(past_key_value, DynamicFp8Cache):
attn_output = xe_addons.sdp_fp8(query_states, key_states, value_states, causal_mask)
else:
attn_output = xe_addons.sdp(query_states, key_states, value_states, causal_mask)
elif use_sdp_causal(q_len, kv_seq_len, self.head_dim, query_states, self.training):
import xe_addons
if isinstance(past_key_value, DynamicFp8Cache):
attn_output = xe_addons.sdp_fp8_causal(query_states, key_states,
value_states, causal_mask)
else:
attn_output = xe_addons.sdp_causal(query_states, key_states,
value_states, causal_mask)
else:
if isinstance(past_key_value, DynamicFp8Cache):
key_states, value_states = restore_fp8_kv_cache(key_states, value_states,
query_states.dtype)
# repeat k/v heads if n_kv_heads < n_heads
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)

attn_weights = torch.matmul(query_states,
key_states.transpose(2, 3)) / math.sqrt(self.head_dim)

if causal_mask is not None:
attn_weights = attn_weights + causal_mask

# upcast attention to fp32
attn_weights = attention_softmax(attn_weights)
attn_output = torch.matmul(attn_weights, value_states)
attn_output = scaled_dot_product_attention(
query_states, key_states, value_states,
attention_mask, q_len == key_states.size(2), math.sqrt(self.head_dim)
)

attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(bsz, q_len, -1)
Expand Down
61 changes: 10 additions & 51 deletions python/llm/src/ipex_llm/transformers/models/qwen2.py
Original file line number Diff line number Diff line change
Expand Up @@ -46,11 +46,12 @@
from torch.nn.functional import scaled_dot_product_attention as sdpa

from ipex_llm.transformers.models.common import merge_qkv_base
from ipex_llm.transformers.models.common import scaled_dot_product_attention
from ipex_llm.transformers.models.utils import SILU, mlp_fusion_check
from ipex_llm.transformers.models.utils import should_use_fuse_rope
from ipex_llm.transformers.models.utils import use_quantize_kv_cache, restore_fp8_kv_cache, \
should_use_compresskv, is_enough_kv_cache_room_4_36, get_compresskv_attn_mask
from ipex_llm.transformers.models.utils import use_flash_attention, use_sdp, use_sdp_causal
from ipex_llm.transformers.models.utils import use_quantize_kv_cache, \
should_use_compresskv, is_enough_kv_cache_room_4_36
from ipex_llm.transformers.models.utils import use_flash_attention
from ipex_llm.transformers.kv import DynamicFp8Cache, DynamicNormalCache, \
DynamicCompressCache, DynamicCompressFp8Cache
from ipex_llm.utils.common import invalidInputError
Expand Down Expand Up @@ -532,7 +533,6 @@ def qwen2_attention_forward(
# [CompressKV]
from ipex_llm.transformers.kv import DynamicCompressCache
use_compresskv = isinstance(past_key_value, DynamicCompressCache)
use_quantizekv = isinstance(past_key_value, DynamicFp8Cache)

if hasattr(self, 'qkv_proj') and self.qkv_proj is not None:
qkv = self.qkv_proj(hidden_states)
Expand Down Expand Up @@ -583,61 +583,20 @@ def qwen2_attention_forward(
self.layer_idx, None)

attn_weights = None
if query_states.device.type == "cpu":
# repeat k/v heads if n_kv_heads < n_heads
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
attn_output = sdpa(query_states,
key_states,
value_states,
attn_mask=attention_mask,
dropout_p=self.attention_dropout if self.training else 0.0,
is_causal=self.is_causal and attention_mask is None and q_len > 1)
elif not self.training and not hidden_states.requires_grad and \
use_flash_attention(query_states, key_states, attention_mask):
if query_states.device.type == 'xpu' \
and use_flash_attention(query_states, key_states, attention_mask):
# repeat k/v heads if n_kv_heads < n_heads
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
attn_output = sdpa(query_states.to(device, dtype=torch.float16),
key_states.to(device, dtype=torch.float16),
value_states.to(device, dtype=torch.float16),
is_causal=True).to(hidden_states.dtype)
elif use_sdp(q_len, kv_seq_len, self.head_dim, query_states):
import xe_addons
if use_compresskv:
attention_mask = get_compresskv_attn_mask(key_states, attention_mask)
if use_quantizekv:
attn_output = xe_addons.sdp_fp8(query_states, key_states, value_states,
attention_mask)
else:
attn_output = xe_addons.sdp(query_states, key_states, value_states,
attention_mask)
elif use_sdp_causal(q_len, kv_seq_len, self.head_dim, query_states, self.training):
import xe_addons
if use_quantizekv:
attn_output = xe_addons.sdp_fp8_causal(query_states, key_states,
value_states, attention_mask)
else:
attn_output = xe_addons.sdp_causal(query_states, key_states,
value_states, attention_mask)
else:
if use_quantizekv:
key_states, value_states = restore_fp8_kv_cache(key_states, value_states,
query_states.dtype)
# repeat k/v heads if n_kv_heads < n_heads
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)

attn_weights = torch.matmul(query_states,
key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
if attention_mask is not None:
attn_weights = attn_weights + attention_mask
# upcast attention to fp32
attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1,
dtype=torch.float32).to(query_states.dtype)
attn_weights = torch.nn.functional.dropout(attn_weights, p=self.attention_dropout,
training=self.training)
attn_output = torch.matmul(attn_weights, value_states)
attn_output = scaled_dot_product_attention(
query_states, key_states, value_states,
attention_mask, q_len == kv_seq_len, math.sqrt(self.head_dim)
)

attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
Expand Down
10 changes: 0 additions & 10 deletions python/llm/src/ipex_llm/transformers/models/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -358,16 +358,6 @@ def use_xmx(x: torch.Tensor, qtype: int):
)


def use_fused_layer_norm(x: torch.Tensor, training: bool):
device = get_xpu_device_type(x)
return (
not training
and not x.requires_grad
and device in ["arc", "flex", "pvc", "mtl", "lnl"] # fused layer norm cannot run on UHD
and x.numel() // x.size(-1) == 1 # fused layer norm is slower in first token
)


def fp16_fusion_check(proj, x, training):
# only use fp16 fusion on PVC inference
if proj is None:
Expand Down
Loading