Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

optimize new minicpm model #12579

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
10 changes: 6 additions & 4 deletions python/llm/src/ipex_llm/transformers/models/common.py
Original file line number Diff line number Diff line change
Expand Up @@ -217,8 +217,8 @@ def prepare_mask(mask, bsz, n_heads, seq_length, kv_length, is_causal, dtype, de
return mask


def scaled_dot_product_attention(query: torch.Tensor, key: torch.Tensor, value: torch.Tensor,
mask: torch.Tensor = None,
def scaled_dot_product_attention(query: torch.Tensor, key: torch.Tensor,
value: torch.Tensor, mask: torch.Tensor = None,
is_causal: bool = False, scale: float = None) -> torch.Tensor:
bsz, n_heads, seq_length, head_dim = query.shape
_, n_kv_heads, kv_length, _ = key.shape
Expand Down Expand Up @@ -268,7 +268,7 @@ def scaled_dot_product_attention(query: torch.Tensor, key: torch.Tensor, value:
attn_output = xe_addons.sdp(query, key, value, mask)
else:
if key.dtype == torch.uint8:
attn_output = xe_addons.sdp_fp8(query, key, value, mask)
attn_output = xe_addons.sdp_fp8_non_causal(query, key, value, mask)
else:
attn_output = xe_addons.sdp_non_causal(query, key, value, mask)

Expand All @@ -281,6 +281,8 @@ def scaled_dot_product_attention(query: torch.Tensor, key: torch.Tensor, value:
key = repeat_kv(key, n_heads // n_kv_heads)
value = repeat_kv(value, n_heads // n_kv_heads)

return torch.nn.functional.scaled_dot_product_attention(
attn_output = torch.nn.functional.scaled_dot_product_attention(
query, key, value, mask, is_causal=is_causal, scale=scale
)
attn_output = attn_output.to(dtype) # workaround ipex 2.1's bug
return attn_output
47 changes: 5 additions & 42 deletions python/llm/src/ipex_llm/transformers/models/minicpm.py
Original file line number Diff line number Diff line change
Expand Up @@ -127,49 +127,12 @@ def minicpm_attention_forward(
key_states, value_states = past_key_value.update(key_states, value_states,
self.layer_idx, None)

from ipex_llm.transformers.models.common import scaled_dot_product_attention
attn_weights = None
if use_sdp(q_len, kv_seq_len, self.head_dim, query_states):
import xe_addons
# [CompressKV]
if use_compresskv:
attention_mask = get_compresskv_attn_mask(key_states, attention_mask)

if use_quantizekv:
attn_output = xe_addons.sdp_fp8(query_states, key_states, value_states,
attention_mask)
else:
attn_output = xe_addons.sdp(query_states, key_states, value_states,
attention_mask)
elif use_sdp_causal(q_len, kv_seq_len, self.head_dim, query_states, self.training):
import xe_addons
if use_quantizekv:
attn_output = xe_addons.sdp_fp8_causal(query_states, key_states,
value_states, attention_mask)
else:
attn_output = xe_addons.sdp_causal(query_states, key_states,
value_states, attention_mask)
else:
if use_quantizekv:
key_states, value_states = restore_fp8_kv_cache(key_states, value_states,
query_states.dtype)
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)

attn_weights = torch.matmul(
query_states, key_states.transpose(2, 3)
) / math.sqrt(self.head_dim)

if attention_mask is not None:
attn_weights = attn_weights + attention_mask

# upcast attention to fp32
attn_weights = nn.functional.softmax(
attn_weights, dim=-1, dtype=torch.float32
).to(query_states.dtype)
attn_weights = nn.functional.dropout(
attn_weights, p=self.attention_dropout, training=self.training
)
attn_output = torch.matmul(attn_weights, value_states)
attn_output = scaled_dot_product_attention(
query_states, key_states, value_states,
attention_mask, q_len == kv_seq_len, math.sqrt(self.head_dim)
)

attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
Expand Down
20 changes: 4 additions & 16 deletions python/llm/src/ipex_llm/transformers/models/minicpmv.py
Original file line number Diff line number Diff line change
Expand Up @@ -28,7 +28,6 @@
from torch.nn.functional import linear
from ipex_llm.transformers.models.common import merge_qkv_base, padding_qkv_hd
from ipex_llm.transformers.models.common import attention_softmax
from ipex_llm.transformers.models.utils import use_sdp_non_causal
from transformers import AutoProcessor, TextIteratorStreamer
from transformers.generation.logits_process import RepetitionPenaltyLogitsProcessor

Expand Down Expand Up @@ -73,21 +72,10 @@ def siglip_attention_forward(
72, 80
)

if use_sdp_non_causal(query_states.size(-1), query_states.device, query_states.dtype):
import xe_addons
attn_weights = None
attn_output = xe_addons.sdp_non_causal(query_states, key_states.contiguous(),
value_states.contiguous(), attention_mask)
else:
attn_weights = torch.matmul(query_states * self.scale, key_states.transpose(2, 3))
if attention_mask is not None:
attn_weights = attn_weights + attention_mask

attn_weights = attention_softmax(attn_weights)

attn_weights = torch.nn.functional.dropout(attn_weights,
p=self.dropout, training=self.training)
attn_output = torch.matmul(attn_weights, value_states)
from ipex_llm.transformers.models.common import scaled_dot_product_attention
attn_weights = None
attn_output = scaled_dot_product_attention(query_states, key_states, value_states,
attention_mask, False, math.sqrt(self.head_dim))

attn_output = attn_output[:, :, :, :self.head_dim]

Expand Down
Loading