Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[NPU] support asym_int4 for llama #12556

Merged
merged 3 commits into from
Dec 17, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
41 changes: 34 additions & 7 deletions python/llm/src/ipex_llm/transformers/npu_models/llama_mp.py
Original file line number Diff line number Diff line change
Expand Up @@ -72,6 +72,7 @@ def __init__(
group_size: int = 0,
cos_len: int = 1,
keep_position_ids=True,
asym: bool = False,
):
super().__init__(max_seq_len=max_seq_len,
transpose_value=transpose_value,
Expand All @@ -80,7 +81,8 @@ def __init__(
device=device,
n_splits_linear=n_splits_linear,
n_splits_down_proj=n_splits_down_proj,
group_size=group_size)
group_size=group_size,
asym=asym)
self.max_seq_len = max_seq_len
self.intermediate_size = intermediate_size
self.dtype = dtype
Expand Down Expand Up @@ -278,16 +280,19 @@ def __init__(
do_print: bool = False,
n_splits_linear: int = 1,
n_splits_down_proj: int = 1,
group_size: int = 0
group_size: int = 0,
asym: bool = False,
):
super().__init__()

self.do_print = do_print

op_parameters = []
for w in parameters:
if isinstance(w, tuple): # from QuantizedLinear
if isinstance(w, tuple) and not asym: # from QuantizedLinear
op_parameters.append((w[0].numpy(), w[1].numpy()))
elif isinstance(w, tuple) and asym: # from QuantizedLinear
op_parameters.append((w[0].numpy(), w[1].numpy(), w[2].numpy()))
elif w.dtype in [torch.int8, torch.uint8]: # QuantizedLinear weight
op_parameters.append(w.numpy())
elif isinstance(w, np.ndarray): # scale
Expand Down Expand Up @@ -341,7 +346,8 @@ def __init__(
dtype=np_dtype,
n_splits_linear=n_splits_linear,
n_splits_down_proj=n_splits_down_proj,
group_size=group_size
group_size=group_size,
asym=asym,
)
self.backend_decoders.append(decoder)

Expand Down Expand Up @@ -427,6 +433,7 @@ def __init__(
n_splits_down_proj: int = 1,
group_size: int = 0,
cos_len: int = 1,
asym: bool = False,
):
super().__init__()
self.op_parameters = parameters
Expand Down Expand Up @@ -460,6 +467,7 @@ def __init__(
n_splits_down_proj=n_splits_down_proj,
group_size=group_size,
cos_len=cos_len,
asym=asym,
)
self.layer_norm_0 = layer_norm_0
self.layer_norm_1 = layer_norm_1
Expand Down Expand Up @@ -555,6 +563,7 @@ def run_decode(
layer_indexs = range(layer_start, layer_end)
n_splits_linear = len(model.model.layers[0].mlp.gate_proj_dq_list)
n_splits_down_proj = len(model.model.layers[0].mlp.down_proj_dq_list)
asym = getattr(model.config, "asym", False)
for layer_idx in layer_indexs:
curr_layer = model.model.layers[layer_idx]
attn_layer = curr_layer.self_attn
Expand All @@ -567,10 +576,17 @@ def run_decode(
mlp_layer.down_proj_dq_list]:
l_weights = []
scales = []
zeros = []
for l in layer_list:
l_weights.append(l.weight)
scales.append(l.scale)
weights.append((torch.stack(l_weights, axis=0), torch.stack(scales, axis=0)))
if l.zero is not None:
zeros.append(l.zero)
if len(zeros):
weights.append((torch.stack(l_weights, axis=0), torch.stack(scales, axis=0),
torch.stack(zeros, axis=0)))
else:
weights.append((torch.stack(l_weights, axis=0), torch.stack(scales, axis=0)))

if hasattr(curr_layer.self_attn.rotary_emb, "cos_cached"):
cached_cos = curr_layer.self_attn.rotary_emb.cos_cached.to(torch.float16)
Expand Down Expand Up @@ -603,7 +619,8 @@ def run_decode(
do_print=False,
n_splits_linear=n_splits_linear,
n_splits_down_proj=n_splits_down_proj,
group_size=group_size
group_size=group_size,
asym=asym,
)

dist.barrier()
Expand Down Expand Up @@ -814,6 +831,7 @@ def run_prefill(
layer_indexs = range(layer_start, layer_end)
n_splits_linear = len(model.model.layers[0].mlp.gate_proj_dq_list)
n_splits_down_proj = len(model.model.layers[0].mlp.down_proj_dq_list)
asym = getattr(model.config, "asym", False)
for layer_idx in layer_indexs:
curr_layer = model.model.layers[layer_idx]
attn_layer = curr_layer.self_attn
Expand All @@ -827,10 +845,18 @@ def run_prefill(
mlp_layer.down_proj_dq_list]:
l_weights = []
scales = []
zeros = []
for l in layer_list:
l_weights.append(l.weight)
scales.append(l.scale)
weights.append((torch.stack(l_weights, axis=0), torch.stack(scales, axis=0)))
if l.zero is not None:
zeros.append(l.zero)
if len(zeros):
weights.append((torch.stack(l_weights, axis=0), torch.stack(scales, axis=0),
torch.stack(zeros, axis=0)))
else:
weights.append((torch.stack(l_weights, axis=0),
torch.stack(scales, axis=0)))

if hasattr(curr_layer.self_attn.rotary_emb, "cos_cached"):
cached_cos = curr_layer.self_attn.rotary_emb.cos_cached.to(torch.float16)
Expand Down Expand Up @@ -859,6 +885,7 @@ def run_prefill(
n_splits_down_proj=n_splits_down_proj,
group_size=group_size,
cos_len=cos_len,
asym=asym,
)

layer_weights.extend(weights)
Expand Down
115 changes: 90 additions & 25 deletions python/llm/src/ipex_llm/transformers/npu_pipeline_model/llama.py
Original file line number Diff line number Diff line change
Expand Up @@ -130,17 +130,31 @@ def convert_lm_head_and_embedding(model, n_splits_linear, temp_dir, weight_dir,
vocab_size = model.config.vocab_size
model_norm = model.model.norm
lm_head = model.lm_head
asym = getattr(model.config, "asym", False)
if n_splits_linear == 1:
weights = [(lm_head.weight, lm_head.scale)]
asym = lm_head.qtype == "asym_int4_rtn"
if asym:
weights = [(lm_head.weight, lm_head.scale, lm_head.zero)]
else:
weights = [(lm_head.weight, lm_head.scale)]
else:
lm_heads = lm_head.lm_heads
asym = lm_heads[0].qtype == "asym_int4_rtn"
lm_head_weights = []
scales = []
for i in range(n_splits_linear):
lm_head_weights.append(lm_heads[i].weight)
scales.append(lm_heads[i].scale)
weights = [(torch.stack(lm_head_weights, axis=0),
torch.stack(scales, axis=0))]
zeros = []
for l in lm_heads:
lm_head_weights.append(l.weight)
scales.append(l.scale)
if l.zero is not None:
zeros.append(l.zero)
if len(zeros):
weights = [(torch.stack(lm_head_weights, axis=0),
torch.stack(scales, axis=0),
torch.stack(zeros, axis=0))]
else:
weights = [(torch.stack(lm_head_weights, axis=0),
torch.stack(scales, axis=0))]
if isinstance(weights[0], tuple):
np_dtype = np.int8 if weights[0][0].dtype == torch.int8 else np.uint8
else: # FP16 Linear
Expand All @@ -156,16 +170,23 @@ def convert_lm_head_and_embedding(model, n_splits_linear, temp_dir, weight_dir,
dtype=np_dtype,
model_norm_weight=model_norm.weight.to(torch.float16),
vocab_size=vocab_size,
n_splits=n_splits_linear
n_splits=n_splits_linear,
asym=asym
)
last_blob_path = update_names_of_IR_and_export_blob(new_lm_head, "lm_head", temp_dir,
True, False)

# save weights bins files
if n_splits_linear == 1:
weight_numpy = [
lm_head.weight.data.numpy(), lm_head.scale.data.numpy(),
]
if not asym:
weight_numpy = [
lm_head.weight.data.numpy(), lm_head.scale.data.numpy(),
]
else:
weight_numpy = [
lm_head.weight.data.numpy(), lm_head.scale.data.numpy(),
lm_head.zero.data.numpy()
]
else:
weight_numpy = [v.numpy() for v in weights[0]]

Expand Down Expand Up @@ -234,6 +255,7 @@ def convert_llama_layer(model, layer_idx, n_splits_linear, n_splits_down_proj,
head_dim = model.model.layers[0].self_attn.head_dim
intermediate_size = model.config.intermediate_size
rms_norm_eps = model.config.rms_norm_eps
asym = getattr(model.config, "asym", False)

from ipex_llm.transformers.npu_models.llama_mp import LowBitLlamaMultiDecoderlayer
curr_layer = model.model.layers[layer_idx]
Expand All @@ -247,10 +269,17 @@ def convert_llama_layer(model, layer_idx, n_splits_linear, n_splits_down_proj,
mlp_layer.down_proj_dq_list]:
l_weights = []
scales = []
zeros = []
for l in layer_list:
l_weights.append(l.weight)
scales.append(l.scale)
weights.append((torch.stack(l_weights, axis=0), torch.stack(scales, axis=0)))
if l.zero is not None:
zeros.append(l.zero)
if len(zeros):
weights.append((torch.stack(l_weights, axis=0), torch.stack(scales, axis=0),
torch.stack(zeros, axis=0)))
else:
weights.append((torch.stack(l_weights, axis=0), torch.stack(scales, axis=0)))

if hasattr(curr_layer.self_attn.rotary_emb, "cos_cached"):
# llama-2-7B & llama-3-8B
Expand Down Expand Up @@ -299,7 +328,8 @@ def convert_llama_layer(model, layer_idx, n_splits_linear, n_splits_down_proj,
n_splits_down_proj=n_splits_down_proj,
group_size=group_size,
cos_len=input_len,
keep_position_ids=keep_position_ids
keep_position_ids=keep_position_ids,
asym=asym
)

rest_blob_path = update_names_of_IR_and_export_blob(single_decoder,
Expand Down Expand Up @@ -329,11 +359,24 @@ def convert_llama_layer(model, layer_idx, n_splits_linear, n_splits_down_proj,
layer_norm_0.data.numpy().tofile(input_lm_bin_file)
layer_norm_1.data.numpy().tofile(post_lm_bin_file)
st_idx = 8
for idx, (weight, scale) in enumerate(weights):
bin_file = os.path.join(weight_dir, f"model_{layer_idx}_input_{st_idx+idx*2}.bin")
weight.numpy().tofile(bin_file)
bin_file = os.path.join(weight_dir, f"model_{layer_idx}_input_{st_idx+idx*2+1}.bin")
scale.numpy().tofile(bin_file)
if not asym:
for idx, (weight, scale) in enumerate(weights):
bin_file = os.path.join(weight_dir, f"model_{layer_idx}_input_{st_idx+idx*2}.bin")
weight.numpy().tofile(bin_file)
bin_file = os.path.join(weight_dir,
f"model_{layer_idx}_input_{st_idx+idx*2+1}.bin")
scale.numpy().tofile(bin_file)
else:
for idx, (weight, scale, zero) in enumerate(weights):
bin_file = os.path.join(weight_dir, f"model_{layer_idx}_input_{st_idx+idx*3}.bin")
weight.numpy().tofile(bin_file)
bin_file = os.path.join(weight_dir,
f"model_{layer_idx}_input_{st_idx+idx*3+1}.bin")
scale.numpy().tofile(bin_file)
bin_file = os.path.join(weight_dir,
f"model_{layer_idx}_input_{st_idx+idx*3+2}.bin")
zero.numpy().tofile(bin_file)

del single_decoder


Expand All @@ -347,6 +390,7 @@ def convert_fused_llama_layer(model, fused_layers, n_splits_linear, n_splits_dow
rms_norm_eps = model.config.rms_norm_eps
layer_num = len(model.model.layers)
fused_layer_num = layer_num // fused_layers
asym = getattr(model.config, "asym", False)

from ipex_llm.transformers.npu_models.llama_mp import LowBitLlamaMultiDecoderlayer
for i in range(fused_layers):
Expand All @@ -370,10 +414,17 @@ def convert_fused_llama_layer(model, fused_layers, n_splits_linear, n_splits_dow
mlp_layer.down_proj_dq_list]:
l_weights = []
scales = []
zeros = []
for l in layer_list:
l_weights.append(l.weight)
scales.append(l.scale)
weights.append((torch.stack(l_weights, axis=0), torch.stack(scales, axis=0)))
if l.zero is not None:
zeros.append(l.zero)
if len(zeros):
weights.append((torch.stack(l_weights, axis=0), torch.stack(scales, axis=0),
torch.stack(zeros, axis=0)))
else:
weights.append((torch.stack(l_weights, axis=0), torch.stack(scales, axis=0)))

if hasattr(curr_layer.self_attn.rotary_emb, "cos_cached"):
# llama-2-7B & llama-3-8B
Expand All @@ -397,12 +448,25 @@ def convert_fused_llama_layer(model, fused_layers, n_splits_linear, n_splits_dow
layer_norm_1.data.numpy().tofile(post_lm_bin_file)
st_idx = 5
# 6, 7 are past k/v
for idx, (weight, scale) in enumerate(weights):
bin_file = os.path.join(weight_dir, f"model_{layer_idx}_input_{st_idx+idx*2}.bin")
weight.numpy().tofile(bin_file)
bin_file = os.path.join(weight_dir,
f"model_{layer_idx}_input_{st_idx+idx*2+1}.bin")
scale.numpy().tofile(bin_file)
if not asym:
for idx, (weight, scale) in enumerate(weights):
bin_file = os.path.join(weight_dir,
f"model_{layer_idx}_input_{st_idx+idx*2}.bin")
weight.numpy().tofile(bin_file)
bin_file = os.path.join(weight_dir,
f"model_{layer_idx}_input_{st_idx+idx*2+1}.bin")
scale.numpy().tofile(bin_file)
else:
for idx, (weight, scale, zero) in enumerate(weights):
bin_file = os.path.join(weight_dir,
f"model_{layer_idx}_input_{st_idx+idx*3}.bin")
weight.numpy().tofile(bin_file)
bin_file = os.path.join(weight_dir,
f"model_{layer_idx}_input_{st_idx+idx*3+1}.bin")
scale.numpy().tofile(bin_file)
bin_file = os.path.join(weight_dir,
f"model_{layer_idx}_input_{st_idx+idx*3+2}.bin")
zero.numpy().tofile(bin_file)

if isinstance(weights[0], tuple):
np_dtype = np.int8 if weights[0][0].dtype == torch.int8 else np.uint8
Expand All @@ -426,7 +490,8 @@ def convert_fused_llama_layer(model, fused_layers, n_splits_linear, n_splits_dow
dtype=np_dtype,
n_splits_linear=n_splits_linear,
n_splits_down_proj=n_splits_down_proj,
group_size=group_size
group_size=group_size,
asym=asym
)
update_names_of_IR_and_export_blob(fused_decoder,
f"decoder_layer_{i}",
Expand Down
Loading