Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

use new fused layer norm #12553

Merged
merged 3 commits into from
Dec 17, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
7 changes: 3 additions & 4 deletions python/llm/src/ipex_llm/transformers/convert.py
Original file line number Diff line number Diff line change
Expand Up @@ -1296,10 +1296,9 @@ def _optimize_post(model, lightweight_bmm=False):
trans_version = transformers.__version__

# convert all nn.LayerNorm
from ipex_llm.transformers.models.bloom import bloom_layer_norm_forward
convert_forward(model,
nn.LayerNorm,
bloom_layer_norm_forward)
from ipex_llm.transformers.models.common import layer_norm_forward
convert_forward(model, nn.LayerNorm, layer_norm_forward)

from ipex_llm.transformers.models.llama import llama_rms_norm_forward
from ipex_llm.transformers.models.llama import llama_mlp_forward

Expand Down
17 changes: 0 additions & 17 deletions python/llm/src/ipex_llm/transformers/models/bloom.py
Original file line number Diff line number Diff line change
Expand Up @@ -64,23 +64,6 @@ def dropout_add(x: torch.Tensor, residual: torch.Tensor, prob: float, training:
return out


def bloom_layer_norm_forward(self, hidden_states):
if use_fused_layer_norm(hidden_states, self.training):
import xe_addons
result = xe_addons.fused_layer_norm(hidden_states,
[self.weight.size(0)],
self.weight,
self.bias,
self.eps)
# if nelement == 0, means fused norm failed, go back to python implement.
if result.nelement != 0:
return result
input_dtype = hidden_states.dtype
result = F.layer_norm(hidden_states.to(self.weight.dtype),
self.normalized_shape, self.weight, self.bias, self.eps)
return result.to(input_dtype)


def bloom_attention_forward(
self,
hidden_states: torch.Tensor,
Expand Down
17 changes: 16 additions & 1 deletion python/llm/src/ipex_llm/transformers/models/common.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,6 +14,7 @@
# limitations under the License.


import math
import torch
from typing import List

Expand Down Expand Up @@ -159,7 +160,7 @@ def rms_norm_forward(self, hidden_states: torch.Tensor):
else:
eps = self.epsilon

if hidden_states.device.type == 'xpu':
if hidden_states.device.type == 'xpu' and hidden_states.dtype in [torch.float, torch.half]:
import xe_addons
x_2d = hidden_states.reshape(-1, hidden_states.size(-1)).contiguous()
output = xe_addons.rms_norm(weight, x_2d, eps)
Expand All @@ -169,3 +170,17 @@ def rms_norm_forward(self, hidden_states: torch.Tensor):
variance = hidden_states.to(torch.float32).pow(2).mean(dim=-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + eps)
return weight * hidden_states.to(input_dtype)


def layer_norm_forward(self, hidden_states: torch.Tensor):
if hidden_states.device.type == 'xpu' and hidden_states.dtype in [torch.float, torch.half]:
import xe_addons
hidden_size = math.prod(self.normalized_shape)
x_2d = hidden_states.reshape(-1, hidden_size).contiguous()
output = xe_addons.layer_norm(x_2d, self.weight, self.bias, self.eps)
return output.reshape(hidden_states.shape)
else:
return torch.nn.functional.layer_norm(
hidden_states, self.normalized_shape,
self.weight, self.bias, self.eps
)
38 changes: 19 additions & 19 deletions python/llm/test/inference_gpu/test_transformers_api_layernorm.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,39 +13,39 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#

import os
import pytest
import gc

import torch
from ipex_llm.transformers import AutoModelForCausalLM, AutoModel
from transformers import LlamaTokenizer, AutoTokenizer

device = os.environ['DEVICE']
print(f'Running on {device}')

PROMPT = "Once upon a time, there existed a little girl who liked to have adventures. She wanted to go to places and meet new people, and have fun"
TEST_MODEL_LIST = [
("Falcon-7B", AutoModelForCausalLM, AutoTokenizer, os.environ.get('FALCON_7B_ORIGIN_PATH'))
]

class Test_Optimize_Gpu_Model:
def setup_method(self):
self.layer_outputs = []
self.pre_layer_outputs = []

def run_optimize_gpu_model(self, Name, Model, Tokenizer, model_path, LayerNorm_layer, layer_before_LayerNorm, lower_bound):
with torch.inference_mode():
def pre_forward_hook(module, input, output, layer_name):
self.pre_layer_outputs.append(output)

def forward_hook(module, input, output, layer_name):
self.layer_outputs.append(output)

tokenizer = Tokenizer.from_pretrained(model_path, trust_remote_code=True)
input_ids = tokenizer.encode(PROMPT, return_tensors="pt").to(device)

model = Model.from_pretrained(model_path,
load_in_4bit=True,
optimize_model=False,
Expand All @@ -64,18 +64,18 @@ def forward_hook(module, input, output, layer_name):
# the list `layer_output` has only one element.
layer_tensor = self.layer_outputs.pop()
model.to('cpu')

opt_model = Model.from_pretrained(model_path,
load_in_4bit=True,
optimize_model=True,
trust_remote_code=True)
opt_model = opt_model.to(device)


def replace_forward_hook(module, input, output, layer_name):
output = self.pre_layer_outputs[0]
return output

for layer_name, layer_module in opt_model.named_modules():
if layer_name == layer_before_LayerNorm:
layer_module.register_forward_hook(
Expand All @@ -89,29 +89,29 @@ def replace_forward_hook(module, input, output, layer_name):
# the list `layer_output` has only one element.
opt_layer_tensor = self.layer_outputs[0]
opt_model.to('cpu')


LayerNorm_output_diff = []
for i, (t1, t2) in enumerate(zip(layer_tensor, opt_layer_tensor)):
LayerNorm_output_diff.append(t1 - t2)

max_diff_tensor = [torch.max(item).item() for item in LayerNorm_output_diff]
print(max_diff_tensor)
torch.xpu.empty_cache()
del model
del opt_model
gc.collect()
assert all(max_diff <= lower_bound for max_diff in max_diff_tensor)

@pytest.mark.parametrize('Name, Model, Tokenizer, model_path',TEST_MODEL_LIST)
def test_dynamic_functions(self, Name, Model, Tokenizer, model_path):
if Name == "Falcon-7B":
self.Falcon_7B_gpu_model(Name, Model, Tokenizer, model_path)


def Falcon_7B_gpu_model(self, Name, Model, Tokenizer, model_path):
# currently only compare the output of the last LayerNorm layer.
layer_before_LayerNorm = "transformer.h.30"
LayerNorm_layer = "transformer.h.31.input_layernorm"
lower_bound = 0
lower_bound = 1e-5
self.run_optimize_gpu_model(Name, Model, Tokenizer, model_path, LayerNorm_layer, layer_before_LayerNorm, lower_bound)
Loading