Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add guide for save-load usage #12498

Merged
merged 2 commits into from
Jan 3, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
@@ -0,0 +1,70 @@
# Save/Load Low-Bit Models with IPEX-LLM Optimizations

In this directory, you will find example on how you could save/load models with IPEX-LLM optimizations on Intel NPU.

## Example: Save/Load Optimized Models
In the example [generate.py](./generate.py), we show a basic use case of saving/loading model in low-bit optimizations to predict the next N tokens using `generate()` API.

## 0. Prerequisites
For `ipex-llm` NPU support, please refer to [Quick Start](../../../../../../../docs/mddocs/Quickstart/npu_quickstart.md#install-prerequisites) for details about the required preparations.

## 1. Install & Runtime Configurations
### 1.1 Installation on Windows
We suggest using conda to manage environment:
```cmd
conda create -n llm python=3.11
conda activate llm

:: install ipex-llm with 'npu' option
pip install --pre --upgrade ipex-llm[npu]

:: [optional] for Llama-3.2-1B-Instruct & Llama-3.2-3B-Instruct
pip install transformers==4.45.0 accelerate==0.33.0
```
Please refer to [Quick Start](../../../../../../../docs/mddocs/Quickstart/npu_quickstart.md#install-prerequisites) for more details about `ipex-llm` installation on Intel NPU.

### 1.2 Runtime Configurations
Please refer to [Quick Start](../../../../../../../docs/mddocs/Quickstart/npu_quickstart.md#runtime-configurations) for environment variables setting based on your device.

## 3. Running examples

If you want to save the optimized model, run:
```
python ./generate.py --repo-id-or-model-path "meta-llama/Llama-2-7b-chat-hf" --save-directory path/to/save/model
```

If you want to load the optimized low-bit model, run:
```
python ./generate.py --load-directory path/to/load/model
```

In the example, several arguments can be passed to satisfy your requirements:

- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the Llama2 model to be downloaded, or the path to the ModelScope checkpoint folder. It is default to be `'meta-llama/Llama-2-7b-chat-hf'`.
- `--save-directory`: argument defining the path to save the low-bit model. Then you can load the low-bit directly.
- `--load-directory`: argument defining the path to load low-bit model.
- `--prompt PROMPT`: argument defining the prompt to be inferred (with integrated prompt format for chat). It is default to be `'What is AI?'`.
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.
- `--max-context-len MAX_CONTEXT_LEN`: Defines the maximum sequence length for both input and output tokens. It is default to be `1024`.
- `--max-prompt-len MAX_PROMPT_LEN`: Defines the maximum number of tokens that the input prompt can contain. It is default to be `512`.

### Sample Output
#### [meta-llama/Llama-2-7b-chat-hf](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf)
```log
Inference time: xxxx s
-------------------- Input --------------------
<s><s> [INST] <<SYS>>

<</SYS>>

What is AI? [/INST]

-------------------- Output --------------------
<s><s> [INST] <<SYS>>

<</SYS>>

What is AI? [/INST]

Artificial Intelligence (AI) is a field of computer science and technology that focuses on the development of intelligent machines that can perform tasks that
```
Original file line number Diff line number Diff line change
@@ -0,0 +1,104 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

import torch
import time
import argparse
from ipex_llm.transformers.npu_model import AutoModelForCausalLM
from transformers import AutoTokenizer
from ipex_llm.utils.common.log4Error import invalidInputError


# you could tune the prompt based on your own model,
LLAMA2_PROMPT_FORMAT = """<s> [INST] <<SYS>>

<</SYS>>

{prompt} [/INST]
"""

if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Example of saving and loading the optimized model')
parser.add_argument('--repo-id-or-model-path', type=str, default="meta-llama/Llama-2-7b-chat-hf",
help='The huggingface repo id for the Llama2 (e.g. `meta-llama/Llama-2-7b-chat-hf` and `meta-llama/Llama-2-13b-chat-hf`) to be downloaded'
', or the path to the huggingface checkpoint folder')
parser.add_argument('--save-directory', type=str, default=None,
help='The path to save the low-bit model.')
parser.add_argument('--load-directory', type=str, default=None,
help='The path to load the low-bit model.')
parser.add_argument('--prompt', type=str, default="What is AI?",
help='Prompt to infer')
parser.add_argument('--n-predict', type=int, default=32,
help='Max tokens to predict')
parser.add_argument("--max-context-len", type=int, default=1024)
parser.add_argument("--max-prompt-len", type=int, default=512)

args = parser.parse_args()
model_path = args.repo_id_or_model_path
save_directory = args.save_directory
load_directory = args.load_directory

if save_directory:
# first time to load and save
model = AutoModelForCausalLM.from_pretrained(
model_path,
torch_dtype=torch.float16,
trust_remote_code=True,
attn_implementation="eager",
load_in_low_bit="sym_int4",
optimize_model=True,
max_context_len=args.max_context_len,
max_prompt_len=args.max_prompt_len,
save_directory=save_directory
)
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
tokenizer.save_pretrained(save_directory)
print(f"Finish to load model from {model_path} and save to {save_directory}")
elif load_directory:
# load low-bit model
model = AutoModelForCausalLM.load_low_bit(
load_directory,
attn_implementation="eager",
torch_dtype=torch.float16,
optimize_model=True,
max_context_len=args.max_context_len,
max_prompt_len=args.max_prompt_len
)
tokenizer = AutoTokenizer.from_pretrained(load_directory, trust_remote_code=True)
print(f"Finish to load model from {load_directory}")
else:
invalidInputError(False,
"Both `--save-directory` and `--load-directory` are None, please provide one of this.")

# Generate predicted tokens
with torch.inference_mode():
for i in range(3):
prompt = LLAMA2_PROMPT_FORMAT.format(prompt=args.prompt)
_input_ids = tokenizer.encode(prompt, return_tensors="pt")

st = time.time()
output = model.generate(
_input_ids, num_beams=1, do_sample=False, max_new_tokens=args.n_predict
)
end = time.time()

print(f"Inference time: {end-st} s")
input_str = tokenizer.decode(_input_ids[0], skip_special_tokens=False)
print("-" * 20, "Input", "-" * 20)
print(input_str)
output_str = tokenizer.decode(output[0], skip_special_tokens=False)
print("-" * 20, "Output", "-" * 20)
print(output_str)
Loading