Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

optimize qwen2_vl multiple image input and video input #12487

Merged
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
71 changes: 50 additions & 21 deletions python/llm/src/ipex_llm/transformers/models/qwen2_vl.py
Original file line number Diff line number Diff line change
Expand Up @@ -191,37 +191,66 @@ def qwen2_vision_attention_forward(
).permute(1, 0, 2, 3).unbind(0)
q = apply_rotary_pos_emb_vision(q.unsqueeze(0), rotary_pos_emb).squeeze(0)
k = apply_rotary_pos_emb_vision(k.unsqueeze(0), rotary_pos_emb).squeeze(0)
# q, k, v: [seq_length, num_heads, head_dim]

q = q.transpose(0, 1)
k = k.transpose(0, 1)
v = v.transpose(0, 1)
seq_lens = cu_seqlens.tolist()
invalidInputError(seq_lens[0] == 0 and seq_lens[-1] == seq_length,
"unexpected input")

if len(cu_seqlens) == 2 and cu_seqlens.tolist() == [0, seq_length]:
attention_mask = None
if use_sdp_non_causal(self.head_dim, q.device, q.dtype):
import xe_addons
image_num = len(seq_lens) - 1
image_size = seq_lens[1] - seq_lens[0]
guessed_seq_lens = torch.arange(0, (image_num + 1) * image_size, image_size,
dtype=cu_seqlens.dtype, device=cu_seqlens.device)
if (guessed_seq_lens == cu_seqlens).all():
q = q.view(image_num, image_size, self.num_heads, self.head_dim).permute(0, 2, 1, 3)
k = k.view(image_num, image_size, self.num_heads, self.head_dim).permute(0, 2, 1, 3)
v = v.view(image_num, image_size, self.num_heads, self.head_dim).permute(0, 2, 1, 3)
# q, k, v: [image_num, num_heads, image_size, head_dim]

attn_output = xe_addons.sdp_non_causal(q, k.contiguous(), v.contiguous(), None)
attn_output = attn_output.permute(0, 2, 1, 3).contiguous()
attn_output = attn_output.view(seq_length, self.num_heads, self.head_dim)
# attn_output: [seq_length, num_heads, head_dim]
else:
q = q.transpose(0, 1).unsqueeze(0)
k = k.transpose(0, 1).unsqueeze(0).contiguous()
v = v.transpose(0, 1).unsqueeze(0).contiguous()
# q, k, v: [1, num_heads, seq_length, head_dim]

attn_outputs = []
for i in range(image_num):
start_idx = seq_lens[i]
end_idx = seq_lens[i + 1]
tmp_q = q[:, :, start_idx:end_idx, :]
tmp_k = k[:, :, start_idx:end_idx, :]
tmp_v = v[:, :, start_idx:end_idx, :]
attn_output = xe_addons.sdp_non_causal(tmp_q, tmp_k, tmp_v, None)
attn_output = attn_output.permute(0, 2, 1, 3)
# attn_output: [1, seq_length, num_heads, head_dim]
attn_outputs.append(attn_output)
attn_output = torch.cat(attn_outputs, dim=1).squeeze(0)
# attn_output: [seq_length, num_heads, head_dim]
else:
attention_mask = torch.full(
[1, seq_length, seq_length], torch.finfo(q.dtype).min, device=q.device, dtype=q.dtype
)
for i in range(1, len(cu_seqlens)):
attention_mask[..., cu_seqlens[i - 1]:cu_seqlens[i],
cu_seqlens[i - 1]:cu_seqlens[i]] = 0
for i in range(1, len(seq_lens)):
attention_mask[..., seq_lens[i - 1]:seq_lens[i], seq_lens[i - 1]:seq_lens[i]] = 0

q = q.transpose(0, 1)
k = k.transpose(0, 1)
v = v.transpose(0, 1)
# q, k, v: [num_heads, seq_length, head_dim]

if use_sdp_non_causal(self.head_dim, q.device, q.dtype):
import xe_addons
q = q.unsqueeze(0)
k = k.unsqueeze(0)
v = v.unsqueeze(0)
if attention_mask is not None:
attention_mask = attention_mask.unsqueeze(0)
attn_output = xe_addons.sdp_non_causal(q, k.contiguous(), v.contiguous(), attention_mask)
attn_output = attn_output.squeeze(0)
else:
attn_weights = torch.matmul(q, k.transpose(1, 2)) / math.sqrt(self.head_dim)
if attention_mask is not None:
attn_weights = attn_weights + attention_mask
attn_weights = attn_weights + attention_mask
attn_weights = attention_softmax(attn_weights)
attn_output = torch.matmul(attn_weights, v)
attn_output = attn_output.transpose(0, 1)
attn_output = attn_output.transpose(0, 1)
# attn_output: [seq_length, num_heads, head_dim]

attn_output = attn_output.reshape(seq_length, -1)
attn_output = self.proj(attn_output)
return attn_output
Expand Down
Loading