Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

small fix of imatrix #12480

Merged
merged 1 commit into from
Dec 3, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
14 changes: 7 additions & 7 deletions python/llm/src/ipex_llm/transformers/npu_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -183,7 +183,7 @@ def from_pretrained(cls, *args, **kwargs):
with torch.no_grad():
# Only mock quantization_group_size=0 for now
cls.load_convert_cpu(qtype, model, "cpu", modules_to_not_convert, 0,
*args, **kwargs)
imatrix_data, *args, **kwargs)
model = model.eval()
logger.info(f"Finish to convert model")
else:
Expand Down Expand Up @@ -220,7 +220,7 @@ def from_pretrained(cls, *args, **kwargs):
optimize_llm(model)
with torch.no_grad():
cls.load_convert(qtype, model, "cpu", modules_to_not_convert,
quantization_group_size, imatrix_data=imatrix_data,
quantization_group_size, imatrix_data,
*args, **kwargs)
if hasattr(model, "llm"):
create_npu_kernels(model.llm)
Expand Down Expand Up @@ -325,12 +325,12 @@ def load_convert(cls, q_k, optimize_model, device, modules_to_not_convert,

@classmethod
def load_convert_cpu(cls, q_k, optimize_model, device, modules_to_not_convert,
group_size=0, *arg, **kwarg):
group_size=0, imatrix_data=None, *arg, **kwarg):
from ipex_llm.transformers.npu_models.convert import replace_with_DequantizedLinear

replace_with_DequantizedLinear(optimize_model, q_k, device=device,
modules_to_not_convert=modules_to_not_convert,
group_size=group_size)
group_size=group_size, imatrix=imatrix_data)

@classmethod
@patch("transformers.dynamic_module_utils.get_imports", patch_flash_attn_import)
Expand Down Expand Up @@ -737,7 +737,7 @@ def optimize_npu_model(cls, *args, **kwargs):
optimize_llm_pre(model, qtype, mixed_precision,
quantization_group_size=quantization_group_size)
cls.load_convert_fp16(qtype, model.encoder, "cpu", modules_to_not_convert,
quantization_group_size, *args, **kwargs)
quantization_group_size, None, *args, **kwargs)
create_npu_kernels(model.encoder)
model = model.eval()
logger.info(f"Finish to convert model")
Expand All @@ -752,11 +752,11 @@ def optimize_npu_model(cls, *args, **kwargs):

@classmethod
def load_convert_fp16(cls, q_k, optimize_model, device, modules_to_not_convert,
group_size=0, *arg, **kwarg):
group_size=0, imatrix_data=None, *arg, **kwarg):
from ipex_llm.transformers.npu_models.xlm_mp import replace_with_FP16Linear
replace_with_FP16Linear(optimize_model, q_k, device=device,
modules_to_not_convert=modules_to_not_convert,
group_size=group_size)
group_size=group_size, imatrix=imatrix_data)

def encode(self,
sentences,
Expand Down
5 changes: 3 additions & 2 deletions python/llm/src/ipex_llm/transformers/npu_models/convert.py
Original file line number Diff line number Diff line change
Expand Up @@ -104,7 +104,7 @@ def replace_with_QuantizedLinear(layer, qtype, device, modules_to_not_convert,

@module_optimization
def replace_with_DequantizedLinear(layer, qtype, device, modules_to_not_convert,
group_size):
group_size, imatrix):
from ipex_llm.transformers.npu_models.linear import DequantizedLinear
from ipex_llm.transformers.low_bit_linear import ggml_convert_qtype
from ipex_llm.ggml.quantize import ggml_tensor_qtype
Expand All @@ -113,7 +113,8 @@ def replace_with_DequantizedLinear(layer, qtype, device, modules_to_not_convert,
enable_scale_search = os.environ.get("IPEX_LLM_NPU_QUANTIZATION_OPT", "0") != "0"
qweights, scale = ggml_convert_qtype(layer.weight.data.to(torch.float32),
iqtype, device=device,
enable_scale_search=enable_scale_search)
enable_scale_search=enable_scale_search,
imatrix=imatrix)
return DequantizedLinear(qweights, scale, layer.bias)


Expand Down
2 changes: 1 addition & 1 deletion python/llm/src/ipex_llm/transformers/npu_models/xlm_mp.py
Original file line number Diff line number Diff line change
Expand Up @@ -721,7 +721,7 @@ def replace_with_Layernorm(layer, qtype=None, device='NPU',

@module_optimization
def replace_with_FP16Linear(layer, qtype, device, modules_to_not_convert,
group_size):
group_size, imatrix=None):
from ipex_llm.transformers.npu_models.linear import Linear
if isinstance(layer, torch.nn.Linear) and not hasattr(layer, "qtype"):
return Linear(layer.weight, layer.bias)
Loading