Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add MiniCPM-V cpu example #11975

Merged
Merged
Show file tree
Hide file tree
Changes from 2 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
@@ -0,0 +1,86 @@
# MiniCPM-V
In this directory, you will find examples on how you could apply IPEX-LLM INT4 optimizations on MiniCPM-V models. For illustration purposes, we utilize the [openbmb/MiniCPM-V-2_6](https://huggingface.co/openbmb/MiniCPM-V-2_6) as a reference MiniCPM-V model.

## 0. Requirements
To run these examples with IPEX-LLM, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information.

## Example: Predict Tokens using `chat()` API
In the example [chat.py](./chat.py), we show a basic use case for a MiniCPM-V model to predict the next N tokens using `chat()` API, with IPEX-LLM INT4 optimizations.
### 1. Install
We suggest using conda to manage environment:

On Linux:

```bash
conda create -n llm python=3.11
conda activate llm

# install ipex-llm with 'all' option
pip install --pre --upgrade ipex-llm[all] --extra-index-url https://download.pytorch.org/whl/cpu
pip install pillow torchvision
JinBridger marked this conversation as resolved.
Show resolved Hide resolved
```
On Windows:

```cmd
conda create -n llm python=3.11
conda activate llm

pip install --pre --upgrade ipex-llm[all]
pip install pillow torchvision
```

### 2. Run

- chat without streaming mode:
```
python ./chat.py --prompt 'What is in the image?'
```
- chat in streaming mode:
```
python ./chat.py --prompt 'What is in the image?' --stream
```

> [!TIP]
> For chatting in streaming mode, it is recommended to set the environment variable `PYTHONUNBUFFERED=1`.


Arguments info:
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the MiniCPM-V model (e.g. `openbmb/MiniCPM-V-2_6`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'openbmb/MiniCPM-V-2_6'`.
- `--image-url-or-path IMAGE_URL_OR_PATH`: argument defining the image to be infered. It is default to be `'http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg'`.
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'What is in the image?'`.
- `--stream`: flag to chat in streaming mode

> **Note**: When loading the model in 4-bit, IPEX-LLM converts linear layers in the model into INT4 format. In theory, a *X*B model saved in 16-bit will requires approximately 2*X* GB of memory for loading, and ~0.5*X* GB memory for further inference.
>
> Please select the appropriate size of the MiniCPM model based on the capabilities of your machine.

#### 2.1 Client
On client Windows machine, it is recommended to run directly with full utilization of all cores:
```cmd
python ./chat.py
```

#### 2.2 Server
For optimal performance on server, it is recommended to set several environment variables (refer to [here](../README.md#best-known-configuration-on-linux) for more information), and run the example with all the physical cores of a single socket.

E.g. on Linux,
```bash
# set IPEX-LLM env variables
source ipex-llm-init

# e.g. for a server with 48 cores per socket
export OMP_NUM_THREADS=48
numactl -C 0-47 -m 0 python ./chat.py
```

#### 2.3 Sample Output
#### [openbmb/MiniCPM-V-2_6](https://huggingface.co/openbmb/MiniCPM-V-2_6)
```log
Inference time: xxxx s
-------------------- Input Image --------------------
http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg
-------------------- Input Prompt --------------------
What is in the image?
-------------------- Chat Output --------------------
The image features a young child holding a white teddy bear dressed in pink. The background includes some red flowers and what appears to be a stone wall.
JinBridger marked this conversation as resolved.
Show resolved Hide resolved
```
Original file line number Diff line number Diff line change
@@ -0,0 +1,107 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#


import os
import time
import argparse
import requests
import torch
from PIL import Image
from ipex_llm.transformers import AutoModel
from transformers import AutoTokenizer


if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Predict Tokens using `chat()` API for MiniCPM-V model')
parser.add_argument('--repo-id-or-model-path', type=str, default="openbmb/MiniCPM-V-2_6",
help='The huggingface repo id for the MiniCPM-V model to be downloaded'
', or the path to the huggingface checkpoint folder')
parser.add_argument('--image-url-or-path', type=str,
default='http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg',
help='The URL or path to the image to infer')
parser.add_argument('--prompt', type=str, default="What is in the image?",
help='Prompt to infer')
parser.add_argument('--stream', action='store_true',
help='Whether to chat in streaming mode')

args = parser.parse_args()
model_path = args.repo_id_or_model_path
image_path = args.image_url_or_path

# Load model in 4 bit,
# which convert the relevant layers in the model into INT4 format
model = AutoModel.from_pretrained(model_path,
load_in_low_bit="sym_int4",
optimize_model=True,
trust_remote_code=True,
use_cache=True,
torch_dtype=torch.float32,
modules_to_not_convert=["vpm", "resampler"])

# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_path,
trust_remote_code=True)
model.eval()

query = args.prompt
if os.path.exists(image_path):
image = Image.open(image_path).convert('RGB')
else:
image = Image.open(requests.get(image_path, stream=True).raw).convert('RGB')

# Generate predicted tokens
# here the prompt tuning refers to https://huggingface.co/openbmb/MiniCPM-V-2_6/blob/main/README.md
msgs = [{'role': 'user', 'content': [image, args.prompt]}]

# ipex_llm model needs a warmup, then inference time can be accurate
model.chat(
image=None,
msgs=msgs,
tokenizer=tokenizer,
)
JinBridger marked this conversation as resolved.
Show resolved Hide resolved

if args.stream:
res = model.chat(
image=None,
msgs=msgs,
tokenizer=tokenizer,
stream=True
)

print('-'*20, 'Input Image', '-'*20)
print(image_path)
print('-'*20, 'Input Prompt', '-'*20)
print(args.prompt)
print('-'*20, 'Stream Chat Output', '-'*20)
for new_text in res:
print(new_text, flush=True, end='')
else:
st = time.time()
res = model.chat(
image=None,
msgs=msgs,
tokenizer=tokenizer,
)
end = time.time()

print(f'Inference time: {end-st} s')
print('-'*20, 'Input Image', '-'*20)
print(image_path)
print('-'*20, 'Input Prompt', '-'*20)
print(args.prompt)
print('-'*20, 'Chat Output', '-'*20)
print(res)
Loading