Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Update benchmark script for NPU #11932

Merged
merged 8 commits into from
Aug 27, 2024
Merged
Show file tree
Hide file tree
Changes from 7 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions python/llm/dev/benchmark/all-in-one/config.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -11,6 +11,7 @@ low_bit: 'sym_int4' # default to use 'sym_int4' (i.e. symmetric int4)
batch_size: 1 # default to 1
in_out_pairs:
- '32-32'
- '960-64'
- '1024-128'
test_api:
- "transformer_int4_fp16_gpu" # on Intel GPU, transformer-like API, (qtype=int4), (dtype=fp16)
Expand All @@ -37,5 +38,6 @@ test_api:
# - "transformers_int4_npu_win" # on Intel NPU for Windows, transformer-like API, (qtype=int4)
cpu_embedding: False # whether put embedding to CPU
streaming: False # whether output in streaming way (only available now for gpu win related test_api)
optimize_model: False # whether apply further optimization on NPU (only available now for transformers_int4_npu_win test_api)
use_fp16_torch_dtype: True # whether use fp16 for non-linear layer (only available now for "pipeline_parallel_gpu" test_api)
task: 'continuation' # task can be 'continuation', 'QA' and 'summarize'
18 changes: 14 additions & 4 deletions python/llm/dev/benchmark/all-in-one/run.py
Original file line number Diff line number Diff line change
Expand Up @@ -136,7 +136,7 @@ def preprocess_prompt(tokenizer, in_len, task):
input_ids = tokenizer.encode(input_str, return_tensors="pt")
return input_ids

def run_model(repo_id, test_api, in_out_pairs, local_model_hub=None, warm_up=1, num_trials=3, num_beams=1, low_bit='sym_int4', cpu_embedding=False, batch_size=1, streaming=False, use_fp16_torch_dtype=False, lookahead=False, task='continuation'):
def run_model(repo_id, test_api, in_out_pairs, local_model_hub=None, warm_up=1, num_trials=3, num_beams=1, low_bit='sym_int4', cpu_embedding=False, batch_size=1, streaming=False, use_fp16_torch_dtype=False, lookahead=False, task='continuation', optimize_model=False):
# TODO: make a parameter
result= {}
if test_api == 'transformer_int4':
Expand Down Expand Up @@ -188,7 +188,7 @@ def run_model(repo_id, test_api, in_out_pairs, local_model_hub=None, warm_up=1,
elif test_api == 'pipeline_parallel_gpu':
result = run_pipeline_parallel_gpu(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, low_bit, batch_size, cpu_embedding, fp16=use_fp16_torch_dtype)
elif test_api == 'transformers_int4_npu_win':
result = transformers_int4_npu_win(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, low_bit, batch_size)
result = transformers_int4_npu_win(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, low_bit, batch_size, optimize_model)
else:
invalidInputError(False, "Unknown test_api " + test_api + ", please check your config.yaml.")

Expand Down Expand Up @@ -603,24 +603,30 @@ def transformers_int4_npu_win(repo_id,
num_trials,
num_beams,
low_bit,
batch_size):
batch_size,
optimize_model):
from ipex_llm.transformers.npu_model import AutoModel, AutoModelForCausalLM
from transformers import AutoTokenizer, LlamaTokenizer

model_path = get_model_path(repo_id, local_model_hub)
in_out_len = in_out_pairs[0].split("-")
max_output_len = max(int(in_out_len[0]) + int(in_out_len[1]), 1024)
# Load model in 4 bit,
# which convert the relevant layers in the model into INT4 format
st = time.perf_counter()
if repo_id in CHATGLM_IDS:
model = AutoModel.from_pretrained(model_path, load_in_low_bit=low_bit, trust_remote_code=True,
optimize_model=optimize_model, max_output_len=max_output_len, max_prompt_len=int(in_out_len[0]), transpose_value_cache=True,
torch_dtype='auto', attn_implementation="eager").eval()
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
elif repo_id in LLAMA_IDS:
model = AutoModelForCausalLM.from_pretrained(model_path, load_in_low_bit=low_bit, trust_remote_code=True,
optimize_model=optimize_model, max_output_len=max_output_len, max_prompt_len=int(in_out_len[0]), transpose_value_cache=True,
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Should we add torch_dtype=torch.float16 as suggested in our example?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Should we add torch_dtype=torch.float16 as suggested in our example?

Have updated.

use_cache=True, attn_implementation="eager").eval()
tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True)
else:
model = AutoModelForCausalLM.from_pretrained(model_path, load_in_low_bit=low_bit, trust_remote_code=True,
optimize_model=optimize_model, max_output_len=max_output_len, max_prompt_len=int(in_out_len[0]), transpose_value_cache=True,
use_cache=True, attn_implementation="eager").eval()
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
end = time.perf_counter()
Expand All @@ -643,6 +649,7 @@ def transformers_int4_npu_win(repo_id,
true_str = tokenizer.batch_decode(input_ids)[0]
input_list = [true_str] * batch_size
input_ids = tokenizer(input_list, return_tensors="pt").input_ids
input_ids = input_ids[:, :in_len]
actual_in_len = input_ids.shape[1]
result[in_out] = []
for i in range(num_trials + warm_up):
Expand Down Expand Up @@ -2016,12 +2023,15 @@ def run_pipeline_parallel_gpu(repo_id,
streaming = False
use_fp16_torch_dtype = False
task = 'continuation'
optimize_model = False # only for transformers_int4_npu_win
if 'streaming' in conf:
streaming = conf['streaming']
if 'use_fp16_torch_dtype' in conf:
use_fp16_torch_dtype = conf['use_fp16_torch_dtype']
if 'task' in conf:
task = conf['task']
if 'optimize_model' in conf:
optimize_model = conf['optimize_model']
lookahead = False

import pandas as pd
Expand All @@ -2048,7 +2058,7 @@ def run_pipeline_parallel_gpu(repo_id,
if task in ['QA', 'summarize'] and conf['num_beams'] == 1 and batch_size == 1:
lookahead = True
run_model(model, api, in_out_pairs, conf['local_model_hub'], conf['warm_up'], conf['num_trials'], conf['num_beams'],
conf['low_bit'], conf['cpu_embedding'], batch_size, streaming, use_fp16_torch_dtype, lookahead, task)
conf['low_bit'], conf['cpu_embedding'], batch_size, streaming, use_fp16_torch_dtype, lookahead, task, optimize_model)
df = pd.DataFrame(results, columns=['model', '1st token avg latency (ms)', '2+ avg latency (ms/token)', 'encoder time (ms)',
'input/output tokens', 'batch_size', 'actual input/output tokens', 'num_beams', 'low_bit', 'cpu_embedding',
'model loading time (s)', 'peak mem (GB)', 'streaming', 'use_fp16_torch_dtype'])
Expand Down
2 changes: 1 addition & 1 deletion python/llm/src/ipex_llm/transformers/npu_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -117,7 +117,7 @@ def from_pretrained(cls, *args, **kwargs):
ignore_argument(kwargs, "pipeline_parallel_stages")
optimize_model = kwargs.pop("optimize_model", False)
max_output_len = kwargs.pop("max_output_len", 1024)
max_prompt_len = kwargs.pop("max_prompt_len", max_output_len)
max_prompt_len = kwargs.pop("max_prompt_len", 512)
inter_pp = kwargs.pop("inter_pp", None)
intra_pp = kwargs.pop("intra_pp", None)
transpose_value_cache = kwargs.pop("transpose_value_cache", True)
Expand Down
Loading