Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

NPU Baichuan2 Multi- Process example #11928

Merged
merged 5 commits into from
Aug 27, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
107 changes: 107 additions & 0 deletions python/llm/example/NPU/HF-Transformers-AutoModels/LLM/baichuan2.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,107 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

import os
import torch
import time
import argparse

from ipex_llm.transformers.npu_model import AutoModelForCausalLM
from transformers import AutoTokenizer

from transformers.utils import logging

logger = logging.get_logger(__name__)

def get_prompt(message: str, chat_history: list[tuple[str, str]],
system_prompt: str) -> str:
texts = [f'<s>[INST] <<SYS>>\n{system_prompt}\n<</SYS>>\n\n']
# The first user input is _not_ stripped
do_strip = False
for user_input, response in chat_history:
user_input = user_input.strip() if do_strip else user_input
do_strip = True
texts.append(f'{user_input} [/INST] {response.strip()} </s><s>[INST] ')
message = message.strip() if do_strip else message
texts.append(f'{message} [/INST]')
return ''.join(texts)

if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Predict Tokens using `generate()` API for npu model"
)
parser.add_argument(
"--repo-id-or-model-path",
type=str,
default="meta-llama/Llama-2-7b-chat-hf",
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Please modify to baichuan

help="The huggingface repo id for the Llama2 model to be downloaded"
", or the path to the huggingface checkpoint folder",
)
parser.add_argument('--prompt', type=str, default="What is AI?",
help='Prompt to infer')
parser.add_argument("--n-predict", type=int, default=32, help="Max tokens to predict")
parser.add_argument("--max-output-len", type=int, default=1024)
parser.add_argument("--max-prompt-len", type=int, default=768)
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

max-prompt-len is better to be 512 by default.

parser.add_argument("--disable-transpose-value-cache", action="store_true", default=False)
parser.add_argument("--intra-pp", type=int, default=2)
parser.add_argument("--inter-pp", type=int, default=2)

args = parser.parse_args()
model_path = args.repo_id_or_model_path

model = AutoModelForCausalLM.from_pretrained(
model_path,
torch_dtype=torch.bfloat16,
trust_remote_code=True,
attn_implementation="eager",
load_in_low_bit="sym_int4",
enable_mp=True,
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

We have just updated API, please change enable_mp to optimize_model

max_output_len=args.max_output_len,
max_prompt_len=args.max_prompt_len,
intra_pp=args.intra_pp,
inter_pp=args.inter_pp,
transpose_value_cache=not args.disable_transpose_value_cache,
)

tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)

DEFAULT_SYSTEM_PROMPT = """\
"""

print("-" * 80)
print("done")
with torch.inference_mode():
print("finish to load")
for i in range(5):
prompt = get_prompt(args.prompt, [], system_prompt=DEFAULT_SYSTEM_PROMPT)
_input_ids = tokenizer.encode(prompt, return_tensors="pt")
print("input length:", len(_input_ids[0]))
st = time.time()
output = model.generate(
_input_ids, num_beams=1, do_sample=False, max_new_tokens=args.n_predict
)
end = time.time()
print(f"Inference time: {end-st} s")
input_str = tokenizer.decode(_input_ids[0], skip_special_tokens=False)
print("-" * 20, "Input", "-" * 20)
print(input_str)
output_str = tokenizer.decode(output[0], skip_special_tokens=False)
print("-" * 20, "Output", "-" * 20)
print(output_str)

print("-" * 80)
print("done")
print("success shut down")
Loading
Loading