Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

fix gptq of llama #11749

Merged
merged 2 commits into from
Aug 9, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -47,13 +47,10 @@
load_in_4bit=True,
torch_dtype=torch.float,
trust_remote_code=True,).to("xpu")

# Load tokenizer
if "qwen" in model_path.lower():
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
else:
tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True)

tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)

# Generate predicted tokens
with torch.inference_mode():
prompt = LLAMA2_PROMPT_FORMAT.format(prompt=args.prompt)
Expand Down
29 changes: 17 additions & 12 deletions python/llm/src/ipex_llm/transformers/models/common.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,17 +19,21 @@


def merge_linear(linears: List[torch.nn.Linear]) -> torch.nn.Linear:
new_weight = torch.cat(list(linear.weight.data for linear in linears), dim=0)
if linears[0].bias is not None:
new_linear = torch.nn.Linear(0, 0, bias=True)
new_bias = torch.cat(list(linear.bias.data for linear in linears), dim=0)
new_linear.bias = torch.nn.Parameter(new_bias, requires_grad=False)
if hasattr(linears[0], "weight"):
# For GPTQ model, it might be qweight
new_weight = torch.cat(list(linear.weight.data for linear in linears), dim=0)
if linears[0].bias is not None:
new_linear = torch.nn.Linear(0, 0, bias=True)
new_bias = torch.cat(list(linear.bias.data for linear in linears), dim=0)
new_linear.bias = torch.nn.Parameter(new_bias, requires_grad=False)
else:
new_linear = torch.nn.Linear(0, 0, bias=False)
new_linear.weight = torch.nn.Parameter(new_weight, requires_grad=False)
new_linear.in_features = new_weight.size(1)
new_linear.out_features = new_weight.size(0)
return new_linear
else:
new_linear = torch.nn.Linear(0, 0, bias=False)
new_linear.weight = torch.nn.Parameter(new_weight, requires_grad=False)
new_linear.in_features = new_weight.size(1)
new_linear.out_features = new_weight.size(0)
return new_linear
return None


def merge_qkv_base(module: torch.nn.Module, attention_class):
Expand All @@ -39,8 +43,9 @@ def merge_qkv_base(module: torch.nn.Module, attention_class):
module.k_proj,
module.v_proj,
])
module.qkv_proj = qkv_proj
del module.q_proj, module.k_proj, module.v_proj
if qkv_proj is not None:
module.qkv_proj = qkv_proj
del module.q_proj, module.k_proj, module.v_proj


def fuse_mlp_base(module: torch.nn.Module, act: int, x: torch.Tensor):
Expand Down
Loading