Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix cohere model on transformers>=4.41 #11575

Merged
merged 4 commits into from
Jul 18, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -17,7 +17,7 @@ conda activate llm

# install ipex-llm with 'all' option
pip install --pre --upgrade ipex-llm[all] --extra-index-url https://download.pytorch.org/whl/cpu
pip install transformers==4.40.0
pip install "transformers>=4.40.0"
```

On Windows:
Expand All @@ -27,7 +27,7 @@ conda create -n llm python=3.11
conda activate llm

pip install --pre --upgrade ipex-llm[all]
pip install transformers==4.40.0
pip install "transformers>=4.40.0"
```

### 2. Run
Expand Down
4 changes: 2 additions & 2 deletions python/llm/example/CPU/PyTorch-Models/Model/cohere/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -18,7 +18,7 @@ conda activate llm

# install the latest ipex-llm nightly build with 'all' option
pip install --pre --upgrade ipex-llm[all] --extra-index-url https://download.pytorch.org/whl/cpu
pip install transformers==4.40.0
pip install "transformers>=4.40.0"
```

On Windows:
Expand All @@ -28,7 +28,7 @@ conda create -n llm python=3.11
conda activate llm

pip install --pre --upgrade ipex-llm[all]
pip install transformers==4.40.0
pip install "transformers>=4.40.0"
```

### 2. Run
Expand Down
4 changes: 2 additions & 2 deletions python/llm/example/GPU/HuggingFace/LLM/cohere/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -17,7 +17,7 @@ conda create -n llm python=3.11
conda activate llm
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
pip install transformers==4.40.0
pip install "transformers>=4.40.0"
conda install -c conda-forge -y gperftools=2.10 # to enable tcmalloc
```

Expand All @@ -29,7 +29,7 @@ conda activate llm

# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
pip install transformers==4.40.0
pip install "transformers>=4.40.0"
```

### 2. Configures OneAPI environment variables for Linux
Expand Down
4 changes: 2 additions & 2 deletions python/llm/example/GPU/PyTorch-Models/Model/cohere/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -17,7 +17,7 @@ conda create -n llm python=3.11
conda activate llm
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
pip install transformers==4.40.0
pip install "transformers>=4.40.0"
conda install -c conda-forge -y gperftools=2.10 # to enable tcmalloc
```

Expand All @@ -29,7 +29,7 @@ conda activate llm

# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
pip install transformers==4.40.0
pip install "transformers>=4.40.0"
```

### 2. Configures OneAPI environment variables for Linux
Expand Down
18 changes: 14 additions & 4 deletions python/llm/src/ipex_llm/transformers/convert.py
Original file line number Diff line number Diff line change
Expand Up @@ -1372,13 +1372,23 @@ def _optimize_post(model, lightweight_bmm=False):
qwen2_attention_forward)
elif model.config.model_type == "cohere":
# for CohereForAI/c4ai-command-r-v01
invalidInputError(version.parse(trans_version) >= version.parse("4.40.0"),
"Please upgrade transformers to 4.40.0 or higher version "
"to run Mixtral models.")
modeling_module_name = model.__class__.__module__
module = importlib.import_module(modeling_module_name)
if version.parse(trans_version) >= version.parse("4.41.0"):
from ipex_llm.transformers.models.cohere import cohere_model_forward_4_41
convert_forward(model,
module.CohereModel,
cohere_model_forward_4_41)
else:
from ipex_llm.transformers.models.cohere import cohere_model_forward
convert_forward(model,
module.CohereModel,
cohere_model_forward)

from ipex_llm.transformers.models.cohere import cohere_attention_forward
from ipex_llm.transformers.models.cohere import cohere_model_forward
convert_forward(model,
module.CohereModel,
cohere_model_forward)
convert_forward(model,
module.CohereAttention,
cohere_attention_forward)
Expand Down
129 changes: 129 additions & 0 deletions python/llm/src/ipex_llm/transformers/models/cohere.py
Original file line number Diff line number Diff line change
Expand Up @@ -191,6 +191,135 @@ def cohere_model_forward(
)


def cohere_model_forward_4_41(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
):
use_cache = use_cache if use_cache is not None \
else self.config.use_cache
if use_cache and use_quantize_kv_cache(self.layers[0].mlp.up_proj, input_ids):
if not isinstance(past_key_values, DynamicFp8Cache):
past_key_values = DynamicFp8Cache.from_legacy_cache(past_key_values)
output_attentions = output_attentions if output_attentions is not None \
else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None
else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict

if input_ids is not None and inputs_embeds is not None:
invalidInputError(False,
"You cannot specify both input_ids and inputs_embeds at the same time")

if self.gradient_checkpointing and self.training and use_cache:
invalidInputError(False,
"`use_cache=True` is incompatible "
"with gradient checkpointing. Setting `use_cache=False`.")
use_cache = False

if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)

past_seen_tokens = 0
return_legacy_cache = False
# kept for BC (non `Cache` `past_key_values` inputs)
if use_cache and not isinstance(past_key_values, Cache):
return_legacy_cache = True
past_key_values = DynamicCache.from_legacy_cache(past_key_values)

if cache_position is None:
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
cache_position = torch.arange(
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
)

if position_ids is None:
position_ids = cache_position.unsqueeze(0)

causal_mask = self._update_causal_mask(
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
)

# embed positions
hidden_states = inputs_embeds

# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
next_decoder_cache = None

for decoder_layer in self.layers:
if output_hidden_states:
all_hidden_states += (hidden_states,)

if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
causal_mask,
position_ids,
past_key_values,
output_attentions,
use_cache,
cache_position,
)
else:
# ipex-llm changes
curr_device = decoder_layer.input_layernorm.weight.device
if causal_mask is not None:
causal_mask = causal_mask.to(curr_device)
if position_ids is not None:
position_ids = position_ids.to(curr_device)
# ipex-llm changes end
layer_outputs = decoder_layer(
hidden_states,
attention_mask=causal_mask,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
)

hidden_states = layer_outputs[0]

if use_cache:
next_decoder_cache = layer_outputs[2 if output_attentions else 1]

if output_attentions:
all_self_attns += (layer_outputs[1],)

hidden_states = self.norm(hidden_states)

# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)

next_cache = next_decoder_cache if use_cache else None
if return_legacy_cache:
next_cache = next_cache.to_legacy_cache()
if not return_dict:
return tuple(v for v in [hidden_states, next_cache,
all_hidden_states, all_self_attns] if v is not None)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)


def cohere_attention_forward(
self,
hidden_states: torch.Tensor,
Expand Down
Loading