Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

add initial support for intel npu acceleration library #11347

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions python/llm/src/ipex_llm/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -27,7 +27,9 @@
import types

# Default is false, set to true to auto importing Intel Extension for PyTorch.
USE_NPU = os.getenv("BIGDL_USE_NPU", 'False').lower() in ('true', '1', 't')
BIGDL_IMPORT_IPEX = os.getenv("BIGDL_IMPORT_IPEX", 'True').lower() in ('true', '1', 't')
BIGDL_IMPORT_IPEX = not USE_NPU and BIGDL_IMPORT_IPEX
if BIGDL_IMPORT_IPEX:
# Import Intel Extension for PyTorch as ipex if XPU version is installed
from .utils.ipex_importer import ipex_importer
Expand Down
141 changes: 141 additions & 0 deletions python/llm/src/ipex_llm/transformers/npu_model.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,141 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

import warnings
import torch
import transformers
from typing import List
from unittest.mock import patch
from transformers.dynamic_module_utils import get_imports

import intel_npu_acceleration_library as npu_lib
from intel_npu_acceleration_library.dtypes import int8, int4

from ipex_llm.utils.common.log4Error import invalidInputError


def patch_flash_attn_import(filename: str) -> List[str]:
"""Work around for https://huggingface.co/microsoft/phi-1_5/discussions/72."""
imports = get_imports(filename)
if "flash_attn" in imports:
imports.remove("flash_attn")
return imports


def ignore_argument(kwargs: dict, key: 'str'):
arg = kwargs.pop(key, None)
if arg is not None:
warnings.warn(f"argument `{key}={arg}` will be ignored")


class _BaseAutoModelClass:
HF_MODEL = None

@classmethod
@patch("transformers.dynamic_module_utils.get_imports", patch_flash_attn_import)
def from_pretrained(cls,
*args,
**kwargs):
"""
Load a model from a directory or the HF Hub. Use load_in_low_bit parameter to convert
model to low-bit format, like int4 and int8.
The loaded model will run supported OPs on NPU, then run other OPs on CPU.

Three new arguments are added to extend Hugging Face's from_pretrained method as follows:
:param load_in_low_bit: str value, options are ``'sym_int4'``, ``'sym_int8'``, ``'fp32'``.
Relevant low bit optimizations will be applied to the model.
:return: a model instance
"""
if kwargs.get('device_map', None) not in [None, 'cpu', 'auto']:
warnings.warn("`device_map` will be ignored")
kwargs['device_map'] = 'cpu'

low_bit = kwargs.pop('load_in_low_bit', None)
low_bit_to_dtype_map = {
'sym_int4': int4,
'sym_int8': int8,
'fp32': torch.float,
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

how about fp16?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

it only moves Linear Computation to NPU, other OPs are still run on CPU, CPU doesn't support most fp16 operations

}
if low_bit is not None:
dtype = low_bit_to_dtype_map[low_bit]
else:
dtype = kwargs.get('torch_dtype', torch.float)
dtype = torch.float if dtype == 'auto' else dtype
invalidInputError(dtype in low_bit_to_dtype_map.values(),
f"unsupported dtype: {dtype}, "
"only `sym_int4`, `sym_int8`, `fp32` are supported")

kwargs["low_cpu_mem_usage"] = True

# ignore following arguments
ignore_argument(kwargs, "model_hub")
ignore_argument(kwargs, "lightweight_bmm")
ignore_argument(kwargs, "load_in_4bit")
ignore_argument(kwargs, "load_in_8bit")
ignore_argument(kwargs, "imatrix")
ignore_argument(kwargs, "mixed_precision")
ignore_argument(kwargs, "cpu_embedding")
ignore_argument(kwargs, "embedding_qtype")
ignore_argument(kwargs, "optimize_model")
ignore_argument(kwargs, "modules_to_not_convert")
ignore_argument(kwargs, "quantization_config")
ignore_argument(kwargs, "speculative")
ignore_argument(kwargs, "pipeline_parallel_stages")

model = cls.HF_Model.from_pretrained(*args, **kwargs)
model = npu_lib.compile(model, dtype, False)

return model


class AutoModelForCausalLM(_BaseAutoModelClass):
HF_Model = transformers.AutoModelForCausalLM


class AutoModel(_BaseAutoModelClass):
HF_Model = transformers.AutoModel


class AutoModelForSpeechSeq2Seq(_BaseAutoModelClass):
HF_Model = transformers.AutoModelForSpeechSeq2Seq


class AutoModelForSeq2SeqLM(_BaseAutoModelClass):
HF_Model = transformers.AutoModelForSeq2SeqLM


class AutoModelForSequenceClassification(_BaseAutoModelClass):
HF_Model = transformers.AutoModelForSequenceClassification


class AutoModelForMaskedLM(_BaseAutoModelClass):
HF_Model = transformers.AutoModelForMaskedLM


class AutoModelForQuestionAnswering(_BaseAutoModelClass):
HF_Model = transformers.AutoModelForQuestionAnswering


class AutoModelForNextSentencePrediction(_BaseAutoModelClass):
HF_Model = transformers.AutoModelForNextSentencePrediction


class AutoModelForMultipleChoice(_BaseAutoModelClass):
HF_Model = transformers.AutoModelForMultipleChoice


class AutoModelForTokenClassification(_BaseAutoModelClass):
HF_Model = transformers.AutoModelForTokenClassification
Loading