-
Notifications
You must be signed in to change notification settings - Fork 1.3k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Deepspeed Zero3 QLoRA Fine-tuning #11048
Closed
Closed
Changes from all commits
Commits
Show all changes
3 commits
Select commit
Hold shift + click to select a range
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
250 changes: 250 additions & 0 deletions
250
python/llm/example/GPU/LLM-Finetuning/Deepspeed-Zero3/alpaca_qlora_zero3_finetuning.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,250 @@ | ||
# | ||
# Copyright 2016 The BigDL Authors. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
# | ||
# Some parts of this file is adapted from | ||
# https://github.com/tloen/alpaca-lora/blob/main/finetune.py | ||
# | ||
# Copyright 2023 Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li | ||
|
||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import os | ||
from typing import List | ||
os.environ["ACCELERATE_USE_XPU"] = "true" | ||
import fire | ||
import torch | ||
from datasets import load_dataset | ||
import accelerate | ||
import transformers | ||
|
||
from transformers import AutoTokenizer, BitsAndBytesConfig, AutoConfig, AutoModelForCausalLM | ||
from peft import ( | ||
get_peft_model_state_dict, | ||
set_peft_model_state_dict, | ||
) | ||
|
||
current_dir = os.path.dirname(os.path.realpath(__file__)) | ||
common_util_path = os.path.join(current_dir, '..', '..') | ||
import sys | ||
sys.path.append(common_util_path) | ||
from common.utils import Prompter, get_int_from_env, wandb_check, get_train_val_data | ||
|
||
from ipex_llm.transformers.qlora import get_peft_model, prepare_model_for_kbit_training,\ | ||
LoraConfig | ||
from ipex_llm.utils.common import invalidInputError | ||
import deepspeed as ds | ||
|
||
local_rank = get_int_from_env(["LOCAL_RANK","MPI_LOCALRANKID"], "0") | ||
world_size = get_int_from_env(["WORLD_SIZE","PMI_SIZE"], "1") | ||
port = get_int_from_env(["MASTER_PORT"], 29500) | ||
os.environ["LOCAL_RANK"] = str(local_rank) | ||
os.environ["WORLD_SIZE"] = str(world_size) | ||
os.environ["RANK"] = str(local_rank) | ||
os.environ["MASTER_PORT"] = str(port) | ||
|
||
def train( | ||
# model/data params | ||
base_model: str = "meta-llama/Llama-2-7b-hf", # the only required argument, default to be "meta-llama/Llama-2-7b-hf" | ||
data_path: str = "yahma/alpaca-cleaned", | ||
output_dir: str = "./ipex-deepspeed-zero3-qlora-alpaca", | ||
# training hyperparams | ||
bf16: bool = True, # default to bf16 | ||
batch_size: int = 128, | ||
micro_batch_size: int = 2, # default to be 2, limited by GPU memory | ||
num_epochs: int = 3, | ||
learning_rate: float = 3e-5, # default to be 3e-5 to avoid divergence | ||
cutoff_len: int = 256, | ||
val_set_size: int = 2000, | ||
# lora hyperparams | ||
lora_r: int = 8, | ||
lora_alpha: int = 16, | ||
lora_dropout: float = 0.05, | ||
lora_target_modules: List[str] = [ | ||
"q_proj", | ||
"v_proj", | ||
"k_proj", | ||
"o_proj", | ||
"up_proj", | ||
"down_proj", | ||
"gate_proj" | ||
], # according to the QLoRA paper (https://arxiv.org/pdf/2305.14314.pdf), it's suggested to fine tune all linear layers | ||
# llm hyperparams | ||
train_on_inputs: bool = True, # if False, masks out inputs in loss | ||
add_eos_token: bool = False, | ||
group_by_length: bool = False, # faster, but produces an odd training loss curve | ||
# wandb params | ||
wandb_project: str = "", | ||
wandb_run_name: str = "", | ||
wandb_watch: str = "", # options: false | gradients | all | ||
wandb_log_model: str = "", # options: false | true | ||
resume_from_checkpoint: str = None, # either training checkpoint or final adapter | ||
prompt_template_name: str = "alpaca", # The prompt template to use, will default to alpaca. | ||
gradient_checkpointing: bool = False, | ||
deepspeed: str = None, | ||
training_mode: str = "qlora", | ||
): | ||
invalidInputError(training_mode == "qlora", | ||
f"This example is for qlora training mode, but got training_mode={training_mode}.") | ||
if int(os.environ.get("LOCAL_RANK", 0)) == 0: | ||
print( | ||
f"Training Alpaca-LoRA model with params:\n" | ||
f"base_model: {base_model}\n" | ||
f"data_path: {data_path}\n" | ||
f"output_dir: {output_dir}\n" | ||
f"batch_size: {batch_size}\n" | ||
f"micro_batch_size: {micro_batch_size}\n" | ||
f"num_epochs: {num_epochs}\n" | ||
f"learning_rate: {learning_rate}\n" | ||
f"cutoff_len: {cutoff_len}\n" | ||
f"val_set_size: {val_set_size}\n" | ||
f"lora_r: {lora_r}\n" | ||
f"lora_alpha: {lora_alpha}\n" | ||
f"lora_dropout: {lora_dropout}\n" | ||
f"lora_target_modules: {lora_target_modules}\n" | ||
f"train_on_inputs: {train_on_inputs}\n" | ||
f"add_eos_token: {add_eos_token}\n" | ||
f"group_by_length: {group_by_length}\n" | ||
f"wandb_project: {wandb_project}\n" | ||
f"wandb_run_name: {wandb_run_name}\n" | ||
f"wandb_watch: {wandb_watch}\n" | ||
f"wandb_log_model: {wandb_log_model}\n" | ||
f"resume_from_checkpoint: {resume_from_checkpoint or False}\n" | ||
f"prompt template: {prompt_template_name}\n" | ||
f"training_mode: {training_mode}\n" | ||
) | ||
assert ( | ||
base_model | ||
), "Please specify a --base_model, e.g. --base_model='huggyllama/llama-7b'" | ||
gradient_accumulation_steps = batch_size // micro_batch_size | ||
|
||
prompter = Prompter(prompt_template_name) | ||
|
||
device_map = "auto" | ||
world_size = int(os.environ.get("WORLD_SIZE", 1)) | ||
ddp = world_size != 1 | ||
if ddp: | ||
device_map = {"": int(os.environ.get("LOCAL_RANK") or 0)} | ||
gradient_accumulation_steps = gradient_accumulation_steps // world_size | ||
|
||
# Check if parameter passed or if set within environ | ||
use_wandb = wandb_check(wandb_project, wandb_watch, wandb_log_model) | ||
|
||
|
||
model_config = model_config = AutoConfig.from_pretrained(base_model) | ||
with ds.zero.Init(config_dict_or_path=deepspeed): | ||
model = AutoModelForCausalLM.from_pretrained( | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. why not setting |
||
base_model, | ||
config=model_config, | ||
torch_dtype=torch.bfloat16, | ||
ignore_mismatched_sizes=True, | ||
) | ||
|
||
from transformers import LlamaTokenizer | ||
tokenizer = LlamaTokenizer.from_pretrained(base_model, trust_remote_code=True) | ||
print(f"Tokenizer loaded on rank {os.environ.get('LOCAL_RANK')}") | ||
|
||
tokenizer.pad_token_id = ( | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. tokenizer.pad_token_id = (
0 # unk. we want this to be different from the eos token
)
tokenizer.padding_side = "left" # Allow batched inference This code is not necessary anymore. |
||
0 # unk. we want this to be different from the eos token | ||
) | ||
tokenizer.padding_side = "left" # Allow batched inference | ||
|
||
print(model) | ||
|
||
# Prepare a IPEX-LLM compatible Peft model | ||
model = prepare_model_for_kbit_training(model, | ||
use_gradient_checkpointing=gradient_checkpointing, | ||
enable_deepspeed_zero3=True) | ||
|
||
config = LoraConfig( | ||
r=lora_r, | ||
lora_alpha=lora_alpha, | ||
target_modules=lora_target_modules, | ||
lora_dropout=lora_dropout, | ||
bias="none", | ||
task_type="CAUSAL_LM", | ||
training_mode=training_mode, | ||
) | ||
print(f"Lora Config: {config}") | ||
model = get_peft_model(model, config, enable_deepspeed_zero3=True) | ||
|
||
if data_path.endswith(".json") or data_path.endswith(".jsonl"): | ||
data = load_dataset("json", data_files=data_path) | ||
else: | ||
data = load_dataset(data_path) | ||
|
||
model.print_trainable_parameters() # Be more transparent about the % of trainable params. | ||
|
||
train_data, val_data = get_train_val_data(data, tokenizer, prompter, train_on_inputs, | ||
add_eos_token, cutoff_len, val_set_size, seed=42) | ||
|
||
trainer = transformers.Trainer( | ||
model=model, | ||
train_dataset=train_data, | ||
eval_dataset=val_data, | ||
args=transformers.TrainingArguments( | ||
per_device_train_batch_size=micro_batch_size, | ||
gradient_accumulation_steps=gradient_accumulation_steps, | ||
# warmup_ratio=0.03, | ||
# warmup_steps=100, | ||
max_grad_norm=0.3, | ||
num_train_epochs=num_epochs, | ||
learning_rate=learning_rate, | ||
lr_scheduler_type="cosine", | ||
bf16=True, # ensure training more stable | ||
logging_steps=1, | ||
optim="adamw_torch", | ||
evaluation_strategy="steps" if val_set_size > 0 else "no", | ||
save_strategy="steps", | ||
eval_steps=100 if val_set_size > 0 else None, | ||
save_steps=100, | ||
output_dir=output_dir, | ||
save_total_limit=100, | ||
load_best_model_at_end=True if val_set_size > 0 else False, | ||
ddp_find_unused_parameters=False if ddp else None, | ||
group_by_length=group_by_length, | ||
report_to="wandb" if use_wandb else None, | ||
run_name=wandb_run_name if use_wandb else None, | ||
gradient_checkpointing=gradient_checkpointing, | ||
ddp_backend="ccl", | ||
deepspeed=deepspeed, | ||
save_safetensors=False, | ||
), | ||
data_collator=transformers.DataCollatorForSeq2Seq( | ||
tokenizer, pad_to_multiple_of=8, return_tensors="pt", padding=True | ||
), | ||
) | ||
model.config.use_cache = False | ||
|
||
trainer.train(resume_from_checkpoint=resume_from_checkpoint) | ||
|
||
model.save_pretrained(output_dir) | ||
|
||
print( | ||
"\n If there's a warning about missing keys above, please disregard :)" | ||
) | ||
|
||
|
||
if __name__ == "__main__": | ||
fire.Fire(train) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Why not using the
AutoModelForCausalLM
fromipex-llm
?