Skip to content

Commit

Permalink
Add qwen2-vl example
Browse files Browse the repository at this point in the history
  • Loading branch information
ATMxsp01 committed Dec 24, 2024
1 parent 45f8f72 commit e60adb1
Show file tree
Hide file tree
Showing 4 changed files with 129 additions and 0 deletions.
Empty file.
120 changes: 120 additions & 0 deletions python/llm/example/GPU/HuggingFace/Multimodal/qwen2-vl/generate.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,120 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

import torch
import time
import argparse
import numpy as np

from transformers import Qwen2VLForConditionalGeneration, AutoProcessor
from ipex_llm.transformers import Qwen2VLForConditionalGeneration
from qwen_vl_utils import process_vision_info
from ipex_llm import optimize_model


if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Predict Tokens using generate() API for Qwen2-VL-7B-Instruct model')
parser.add_argument('--repo-id-or-model-path', type=str, default="Qwen/Qwen2-VL-7B-Instruct",
help='The huggingface repo id for the Qwen2-VL model to be downloaded'
', or the path to the huggingface checkpoint folder')
parser.add_argument('--prompt', type=str, default="Describe this image.",
help='Prompt to infer')
parser.add_argument('--image-url-or-path', type=str,
default='http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg' ,
help='The URL or path to the image to infer')

parser.add_argument('--n-predict', type=int, default=32,
help='Max tokens to predict')
parser.add_argument('--modelscope', action="store_true", default=False,
help="Use models from modelscope")

args = parser.parse_args()
model_path = args.repo_id_or_model_path

model = Qwen2VLForConditionalGeneration.from_pretrained(model_path,
load_in_4bit=True,
trust_remote_code=True,
torch_dtype='auto',
low_cpu_mem_usage=True,
use_cache=True,)

model = optimize_model(model, low_bit='sym_int4', modules_to_not_convert=["visual"])

# Use .float() for better output, and use .half() for better speed
model = model.half().to("xpu")

# The following code for generation is adapted from https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct#quickstart

# The default range for the number of visual tokens per image in the model is 4-16384. You can set min_pixels and max_pixels according to your needs, such as a token count range of 256-1280, to balance speed and memory usage.
min_pixels = 256*28*28
max_pixels = 1280*28*28
processor = AutoProcessor.from_pretrained(model_path, min_pixels=min_pixels, max_pixels=max_pixels)

prompt = args.prompt
image_path = args.image_url_or_path

messages = [
{
"role": "user",
"content": [
{
"type": "image",
"image": image_path,
},
{"type": "text", "text": prompt},
],
}
]
text = processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
)
inputs = inputs.to('xpu')

with torch.inference_mode():
# warmup
generated_ids = model.generate(
**inputs,
max_new_tokens=args.n_predict
)

st = time.time()
generated_ids = model.generate(
**inputs,
max_new_tokens=args.n_predict
)
torch.xpu.synchronize()
end = time.time()
generated_ids = generated_ids.cpu()
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(inputs.input_ids, generated_ids)
]

response = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(f'Inference time: {end-st} s')
print('-'*20, 'Input Image', '-'*20)
print(image_path)
print('-'*20, 'Prompt', '-'*20)
print(prompt)
print('-'*20, 'Output', '-'*20)
print(response)
5 changes: 5 additions & 0 deletions python/llm/src/ipex_llm/transformers/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -21,5 +21,10 @@
AutoModelForSequenceClassification, AutoModelForMaskedLM, \
AutoModelForNextSentencePrediction, AutoModelForMultipleChoice, \
AutoModelForTokenClassification

import transformers
if transformers.__version__ >= '4.45.0':
from .model import Qwen2VLForConditionalGeneration

from .modelling_bigdl import *
from .pipeline_parallel import init_pipeline_parallel, PPModelWorker
4 changes: 4 additions & 0 deletions python/llm/src/ipex_llm/transformers/model.py
Original file line number Diff line number Diff line change
Expand Up @@ -839,3 +839,7 @@ class AutoModelForMultipleChoice(_BaseAutoModelClass):

class AutoModelForTokenClassification(_BaseAutoModelClass):
HF_Model = transformers.AutoModelForTokenClassification

if transformers.__version__ >= '4.45.0':
class Qwen2VLForConditionalGeneration(_BaseAutoModelClass):
HF_MODEL = transformers.Qwen2VLForConditionalGeneration

0 comments on commit e60adb1

Please sign in to comment.