Skip to content

Commit

Permalink
fix
Browse files Browse the repository at this point in the history
  • Loading branch information
plusbang committed Jun 17, 2024
1 parent a2a5890 commit cad798c
Show file tree
Hide file tree
Showing 4 changed files with 65 additions and 2 deletions.
3 changes: 2 additions & 1 deletion python/llm/example/GPU/Pipeline-Parallel-Inference/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -11,6 +11,7 @@ To run this example with IPEX-LLM on Intel GPUs, we have some recommended requir
- [meta-llama/Meta-Llama-3-8B-Instruct](./run_llama_arc_2_card.sh)
- [Qwen/Qwen1.5-7B-Chat](./run_qwen1.5_arc_2_card.sh)
- [Qwen/Qwen1.5-14B-Chat](./run_qwen1.5_arc_2_card.sh)
- [Qwen/Qwen1.5-32B-Chat](./run_qwen1.5_arc_2_card.sh)
- [baichuan-inc/Baichuan2-7B-Chat](./run_baichuan2_arc_2_card.sh)
- [baichuan-inc/Baichuan2-13B-Chat](./run_baichuan2_arc_2_card.sh)

Expand Down Expand Up @@ -54,7 +55,7 @@ bash run_llama_arc_2_card.sh
<details>
<summary> Show Qwen1.5 example </summary>

#### Run Qwen1.5-7B-Chat / Qwen1.5-14B-Chat on two Intel Arc A770
#### Run Qwen1.5-7B-Chat / Qwen1.5-14B-Chat / Qwen1.5-32B-Chat on two Intel Arc A770

You could specify `--repo-id-or-model-path` in the test script to be the huggingface repo id for Qwen1.5 to be downloaded, or the path to the huggingface checkpoint folder. Besides, you could change `NUM_GPUS` to the number of GPUs you have on your machine.

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -46,6 +46,7 @@
optimize_model=True,
trust_remote_code=True,
use_cache=True,
torch_dtype=torch.float16,
pipeline_parallel_stages=args.gpu_num)

# Load tokenizer
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -34,3 +34,7 @@ CCL_ZE_IPC_EXCHANGE=sockets torchrun --standalone --nnodes=1 --nproc-per-node $N
# # To run Qwen1.5-14B-Chat
# CCL_ZE_IPC_EXCHANGE=sockets torchrun --standalone --nnodes=1 --nproc-per-node $NUM_GPUS \
# generate.py --repo-id-or-model-path 'Qwen/Qwen1.5-14B-Chat' --gpu-num $NUM_GPUS

# # To run Qwen1.5-32B-Chat
# CCL_ZE_IPC_EXCHANGE=sockets torchrun --standalone --nnodes=1 --nproc-per-node $NUM_GPUS \
# generate.py --repo-id-or-model-path 'Qwen/Qwen1.5-32B-Chat' --gpu-num $NUM_GPUS
59 changes: 58 additions & 1 deletion python/llm/src/ipex_llm/transformers/pipeline_parallel.py
Original file line number Diff line number Diff line change
Expand Up @@ -25,6 +25,9 @@
import numpy as np
from typing import Callable, List, Optional
from transformers import GenerationConfig, LogitsProcessorList, StoppingCriteriaList
from ipex_llm.utils.common import invalidInputError
import logging
logger = logging.getLogger(__name__)

# patch GenerationMixin.generate
from transformers import GenerationMixin
Expand Down Expand Up @@ -117,12 +120,34 @@ def generate(
**kwargs,
):
if hasattr(self, 'pipeline_parallel_stages') and self.pipeline_parallel_stages > 1:
# priority: `generation_config` argument > `model.generation_config`
if generation_config is None:
if (
self.generation_config._from_model_config
and self.generation_config._original_object_hash == hash(self.generation_config)
and self.config._has_non_default_generation_parameters()
):
new_generation_config = GenerationConfig.from_model_config(self.config)
if new_generation_config != self.generation_config:
self.generation_config = new_generation_config
generation_config = self.generation_config

if generation_config.pad_token_id is None and generation_config.eos_token_id is not None:
eos_token_id = generation_config.eos_token_id
if isinstance(eos_token_id, list):
eos_token_id = eos_token_id[0]
logger.warning("Setting `pad_token_id` to `eos_token_id`: "
f"{eos_token_id} for open-end generation.")
generation_config.pad_token_id = eos_token_id

if generation_config is not None and generation_config.max_new_tokens is not None:
max_new_tokens = generation_config.max_new_tokens
else:
max_new_tokens = kwargs.get("max_new_tokens", None)

return self.pipeline_parallel_generate(inputs=inputs,
max_new_tokens=max_new_tokens,)
max_new_tokens=max_new_tokens,
generation_config=generation_config,)

return original_generate(self,
inputs=inputs,
Expand All @@ -142,6 +167,7 @@ def generate(
def pipeline_parallel_generate(self,
inputs: Optional[torch.Tensor] = None,
max_new_tokens: int = 32,
generation_config: Optional[GenerationConfig] = None,
**kwargs):
local_rank = dist.get_rank()
pre_rank = (local_rank - 1) % self.pipeline_parallel_stages
Expand All @@ -153,12 +179,22 @@ def pipeline_parallel_generate(self,
self.first_token_time = 0
self.next_token_time = []

pad_token_id = generation_config.pad_token_id
eos_token_id = generation_config.eos_token_id
if isinstance(eos_token_id, int):
eos_token_id = [eos_token_id]
eos_token_id_tensor = torch.tensor(eos_token_id).to(inputs.device) \
if eos_token_id is not None else None

_input_ids = None
_past_key_values = None
bs = inputs.shape[0]
output_ids = inputs.clone()

step = 0
# keep track of which sequences are already finished
unfinished_sequences = torch.ones(inputs.shape[0], dtype=torch.long, device=inputs.device)
this_peer_finished = False
while True:
if step >= max_new_tokens:
break
Expand Down Expand Up @@ -189,6 +225,14 @@ def pipeline_parallel_generate(self,
_input_ids = next_ids
output_ids = torch.cat([output_ids, next_ids], dim=-1)

# finished sentences should have their next token be a padding token
next_ids = next_ids.squeeze()
if eos_token_id is not None:
if pad_token_id is None:
invalidInputError(False, "If `eos_token_id` is defined, "
"make sure that `pad_token_id` is defined.")
next_ids = next_ids * unfinished_sequences + pad_token_id * (1 - unfinished_sequences)

if isinstance(outputs.past_key_values, tuple) and local_rank != 0:
value_placeholder = torch.empty_like((outputs.past_key_values)[-1][0])
past_key_values_placeholder = tuple(
Expand All @@ -203,6 +247,19 @@ def pipeline_parallel_generate(self,
self.first_token_time = toc - tic
else:
self.next_token_time.append(toc - tic)

# if eos_token was found in one sentence, set sentence to finished
if eos_token_id_tensor is not None:
unfinished_sequences = unfinished_sequences.mul(
next_ids.tile(eos_token_id_tensor.shape[0], 1)
.ne(eos_token_id_tensor.unsqueeze(1)).prod(dim=0)
)
# stop when each sentence is finished
if unfinished_sequences.max() == 0:
this_peer_finished = True
if this_peer_finished:
break

step += 1
if self.device.type == 'xpu':
torch.xpu.synchronize()
Expand Down

0 comments on commit cad798c

Please sign in to comment.