-
Notifications
You must be signed in to change notification settings - Fork 1.3k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
a10f5a1
commit ba8cc6b
Showing
3 changed files
with
224 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
205 changes: 205 additions & 0 deletions
205
python/llm/src/ipex_llm/transformers/models/starcoder2.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,205 @@ | ||
# | ||
# Copyright 2016 The BigDL Authors. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
# | ||
# Some parts of this file is adapted from | ||
# https://github.com/huggingface/transformers/blob/v4.39.0/src/transformers/models/starcoder2/modeling_starcoder2.py | ||
# which is licensed under Apache License 2.0: | ||
# | ||
# Copyright 2024 BigCode and the HuggingFace Inc. team. All rights reserved. | ||
# | ||
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX | ||
# and OPT implementations in this library. It has been modified from its | ||
# original forms to accommodate minor architectural differences compared | ||
# to GPT-NeoX and OPT used by the Meta AI team that trained the model. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import math | ||
import torch | ||
import warnings | ||
|
||
from ipex_llm.transformers.models.utils import ( | ||
use_quantize_kv_cache, restore_fp8_kv_cache, | ||
apply_rotary_pos_emb_no_cache_xpu | ||
) | ||
from ipex_llm.transformers.kv import DynamicFp8Cache | ||
from ipex_llm.utils.common.log4Error import invalidInputError | ||
|
||
from typing import Optional, Tuple, List | ||
from transformers.cache_utils import Cache | ||
from transformers.models.starcoder2.modeling_starcoder2 import repeat_kv, apply_rotary_pos_emb | ||
from transformers.models.starcoder2.modeling_starcoder2 import Starcoder2Model, Starcoder2Attention | ||
|
||
|
||
def should_use_fuse_rope(self, hidden_states, position_ids): | ||
use_fuse_rope = ( | ||
hidden_states.device.type == "xpu" and | ||
not (self.training and hidden_states.requires_grad) and | ||
position_ids is not None | ||
) | ||
return use_fuse_rope | ||
|
||
|
||
def merge_qkv(module: torch.nn.Module): | ||
if isinstance(module, Starcoder2Attention): | ||
new_weight = torch.cat([ | ||
module.q_proj.weight.data, | ||
module.k_proj.weight.data, | ||
module.v_proj.weight.data, | ||
], dim=0) | ||
new_bias = torch.cat([ | ||
module.q_proj.bias.data, | ||
module.k_proj.bias.data, | ||
module.v_proj.bias.data, | ||
], dim=-1) | ||
|
||
qkv_proj = torch.nn.Linear(0, 0, bias=True) | ||
qkv_proj.weight = torch.nn.Parameter(new_weight, requires_grad=False) | ||
qkv_proj.bias = torch.nn.Parameter(new_bias, requires_grad=False) | ||
qkv_proj.in_features = new_weight.size(1) | ||
qkv_proj.out_features = new_weight.size(0) | ||
module.qkv_proj = qkv_proj | ||
|
||
del module.q_proj, module.k_proj, module.v_proj | ||
|
||
|
||
def attention_forward( | ||
self, | ||
hidden_states: torch.Tensor, | ||
attention_mask: Optional[torch.Tensor] = None, | ||
position_ids: Optional[torch.LongTensor] = None, | ||
past_key_value: Optional[Cache] = None, | ||
output_attentions: bool = False, | ||
use_cache: bool = False, | ||
**kwargs, | ||
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | ||
if "padding_mask" in kwargs: | ||
warnings.warn( | ||
"Passing `padding_mask` is deprecated and will be removed in v4.37. " | ||
"Please make sure use `attention_mask` instead.`" | ||
) | ||
bsz, q_len, _ = hidden_states.size() | ||
|
||
qkv = self.qkv_proj(hidden_states) | ||
qkv = qkv.view(bsz, q_len, self.num_heads + 2 * self.num_key_value_heads, self.head_dim) | ||
qkv = qkv.transpose(1, 2) | ||
query_states, key_states, value_states = qkv.split([self.num_heads, | ||
self.num_key_value_heads, | ||
self.num_key_value_heads], dim=1) | ||
|
||
kv_seq_len = key_states.shape[-2] | ||
if past_key_value is not None: | ||
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) | ||
|
||
# IPEX-LLM OPT: fuse rope | ||
if should_use_fuse_rope(self, hidden_states, position_ids): | ||
query_states, key_states = apply_rotary_pos_emb_no_cache_xpu(query_states, | ||
key_states, | ||
position_ids, | ||
"mistral", | ||
self.rope_theta) | ||
else: | ||
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) | ||
query_states, key_states = apply_rotary_pos_emb( | ||
query_states, key_states, cos, sin, position_ids) | ||
|
||
# IPEX-LLM OPT: kv cache and quantize kv cache | ||
invalidInputError(past_key_value is not None, | ||
"`past_key_value` cannot be None") | ||
use_quantize_kv = use_quantize_kv_cache(self.o_proj, hidden_states) | ||
|
||
if use_quantize_kv: | ||
key_states, value_states = past_key_value.update(key_states, value_states, | ||
self.layer_idx, None, new_layout=True) | ||
else: | ||
key_states, value_states = past_key_value.update(key_states, value_states, | ||
self.layer_idx, None) | ||
|
||
if use_quantize_kv and q_len == 1: | ||
import linear_q4_0 | ||
attn_output = linear_q4_0.sdp_fp8(query_states, key_states, value_states, attention_mask) | ||
attn_weights = None | ||
else: | ||
if use_quantize_kv: | ||
key_states, value_states = restore_fp8_kv_cache(key_states, value_states, | ||
query_states.dtype) | ||
|
||
# repeat k/v heads if n_kv_heads < n_heads | ||
key_states = repeat_kv(key_states, self.num_key_value_groups) | ||
value_states = repeat_kv(value_states, self.num_key_value_groups) | ||
|
||
attn_weights = torch.matmul(query_states, | ||
key_states.transpose(2, 3)) / math.sqrt(self.head_dim) | ||
|
||
if attention_mask is not None: | ||
attn_weights = attn_weights + attention_mask | ||
|
||
# upcast attention to fp32 | ||
attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1, | ||
dtype=torch.float32).to(query_states.dtype) | ||
attn_weights = torch.nn.functional.dropout(attn_weights, p=self.attention_dropout, | ||
training=self.training) | ||
attn_output = torch.matmul(attn_weights, value_states) | ||
|
||
attn_output = attn_output.transpose(1, 2).contiguous() | ||
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) | ||
|
||
attn_output = self.o_proj(attn_output) | ||
attn_output = torch.nn.functional.dropout(attn_output, p=self.residual_dropout, | ||
training=self.training) | ||
if not output_attentions: | ||
attn_weights = None | ||
|
||
return attn_output, attn_weights, past_key_value | ||
|
||
|
||
def model_forward( | ||
self, | ||
input_ids: torch.LongTensor = None, | ||
attention_mask: Optional[torch.Tensor] = None, | ||
position_ids: Optional[torch.LongTensor] = None, | ||
past_key_values: Optional[List[torch.FloatTensor]] = None, | ||
inputs_embeds: Optional[torch.FloatTensor] = None, | ||
use_cache: Optional[bool] = None, | ||
output_attentions: Optional[bool] = None, | ||
output_hidden_states: Optional[bool] = None, | ||
return_dict: Optional[bool] = None, | ||
): | ||
use_cache = use_cache if use_cache is not None else self.config.use_cache | ||
if use_cache and use_quantize_kv_cache(self.layers[0].mlp.c_fc, input_ids): | ||
if not isinstance(past_key_values, DynamicFp8Cache): | ||
past_key_values = DynamicFp8Cache.from_legacy_cache(past_key_values) | ||
return Starcoder2Model.forward( | ||
self=self, | ||
input_ids=input_ids, | ||
attention_mask=attention_mask, | ||
position_ids=position_ids, | ||
past_key_values=past_key_values, | ||
inputs_embeds=inputs_embeds, | ||
use_cache=use_cache, | ||
output_attentions=output_attentions, | ||
output_hidden_states=output_hidden_states, | ||
return_dict=return_dict, | ||
) |