-
Notifications
You must be signed in to change notification settings - Fork 1.3k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
added tokenization file for codegeex2-6b in pytorch-models(#11875)
* added tokenization file * tokenization file readme update * optional
- Loading branch information
Showing
2 changed files
with
303 additions
and
3 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
289 changes: 289 additions & 0 deletions
289
python/llm/example/GPU/PyTorch-Models/Model/codegeex2/codegeex2-6b/tokenization_chatglm.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,289 @@ | ||
# | ||
# Copyright 2016 The BigDL Authors. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
# | ||
|
||
# =========================================================================== | ||
# | ||
# This file is adapted from | ||
# https://huggingface.co/THUDM/codegeex2-6b/blob/ee1e7db429e587645bd3f0f4c3f5d8e6e843f2f6/tokenization_chatglm.py | ||
# | ||
# Apache 2.0 license | ||
# https://huggingface.co/THUDM/codegeex2-6b/blob/main/LICENSE | ||
|
||
import os | ||
import torch | ||
from typing import List, Optional, Union, Dict | ||
from sentencepiece import SentencePieceProcessor | ||
from transformers import PreTrainedTokenizer | ||
from transformers.utils import logging, PaddingStrategy | ||
from transformers.tokenization_utils_base import EncodedInput, BatchEncoding | ||
|
||
|
||
class SPTokenizer: | ||
def __init__(self, model_path: str): | ||
# reload tokenizer | ||
assert os.path.isfile(model_path), model_path | ||
self.sp_model = SentencePieceProcessor(model_file=model_path) | ||
|
||
# BOS / EOS token IDs | ||
self.n_words: int = self.sp_model.vocab_size() | ||
self.bos_id: int = self.sp_model.bos_id() | ||
self.eos_id: int = self.sp_model.eos_id() | ||
self.pad_id: int = self.sp_model.unk_id() | ||
assert self.sp_model.vocab_size() == self.sp_model.get_piece_size() | ||
|
||
special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "sop", "eop"] | ||
self.special_tokens = {} | ||
self.index_special_tokens = {} | ||
for token in special_tokens: | ||
self.special_tokens[token] = self.n_words | ||
self.index_special_tokens[self.n_words] = token | ||
self.n_words += 1 | ||
|
||
def tokenize(self, s: str): | ||
return self.sp_model.EncodeAsPieces(s) | ||
|
||
def encode(self, s: str, bos: bool = False, eos: bool = False) -> List[int]: | ||
assert type(s) is str | ||
t = self.sp_model.encode(s) | ||
if bos: | ||
t = [self.bos_id] + t | ||
if eos: | ||
t = t + [self.eos_id] | ||
return t | ||
|
||
def decode(self, t: List[int]) -> str: | ||
return self.sp_model.decode(t) | ||
|
||
def decode_tokens(self, tokens: List[str]) -> str: | ||
text = self.sp_model.DecodePieces(tokens) | ||
return text | ||
|
||
def convert_token_to_id(self, token): | ||
""" Converts a token (str) in an id using the vocab. """ | ||
if token in self.special_tokens: | ||
return self.special_tokens[token] | ||
return self.sp_model.PieceToId(token) | ||
|
||
def convert_id_to_token(self, index): | ||
"""Converts an index (integer) in a token (str) using the vocab.""" | ||
if index in self.index_special_tokens or index in [self.eos_id, self.bos_id, self.pad_id] or index < 0: | ||
return "" | ||
return self.sp_model.IdToPiece(index) | ||
|
||
|
||
class ChatGLMTokenizer(PreTrainedTokenizer): | ||
vocab_files_names = {"vocab_file": "tokenizer.model"} | ||
|
||
model_input_names = ["input_ids", "attention_mask", "position_ids"] | ||
|
||
def __init__(self, vocab_file, padding_side="left", clean_up_tokenization_spaces=False, **kwargs): | ||
self.tokenizer = SPTokenizer(vocab_file) | ||
super().__init__(padding_side=padding_side, clean_up_tokenization_spaces=clean_up_tokenization_spaces, **kwargs) | ||
self.name = "GLMTokenizer" | ||
|
||
self.vocab_file = vocab_file | ||
|
||
self.special_tokens = { | ||
"<bos>": self.tokenizer.bos_id, | ||
"<eos>": self.tokenizer.eos_id, | ||
"<pad>": self.tokenizer.pad_id | ||
} | ||
|
||
def get_command(self, token): | ||
if token in self.special_tokens: | ||
return self.special_tokens[token] | ||
assert token in self.tokenizer.special_tokens, f"{token} is not a special token for {self.name}" | ||
return self.tokenizer.special_tokens[token] | ||
|
||
@property | ||
def unk_token(self) -> str: | ||
return "<unk>" | ||
|
||
@property | ||
def pad_token(self) -> str: | ||
return "<unk>" | ||
|
||
@property | ||
def pad_token_id(self): | ||
return self.get_command("<pad>") | ||
|
||
@property | ||
def eos_token(self) -> str: | ||
return "</s>" | ||
|
||
@property | ||
def eos_token_id(self): | ||
return self.get_command("<eos>") | ||
|
||
@property | ||
def vocab_size(self): | ||
return self.tokenizer.n_words | ||
|
||
def get_vocab(self): | ||
""" Returns vocab as a dict """ | ||
vocab = {self._convert_id_to_token(i): i for i in range(self.vocab_size)} | ||
vocab.update(self.added_tokens_encoder) | ||
return vocab | ||
|
||
def _tokenize(self, text, **kwargs): | ||
return self.tokenizer.tokenize(text) | ||
|
||
def _convert_token_to_id(self, token): | ||
""" Converts a token (str) in an id using the vocab. """ | ||
return self.tokenizer.convert_token_to_id(token) | ||
|
||
def _convert_id_to_token(self, index): | ||
"""Converts an index (integer) in a token (str) using the vocab.""" | ||
return self.tokenizer.convert_id_to_token(index) | ||
|
||
def convert_tokens_to_string(self, tokens: List[str]) -> str: | ||
return self.tokenizer.decode_tokens(tokens) | ||
|
||
def save_vocabulary(self, save_directory, filename_prefix=None): | ||
""" | ||
Save the vocabulary and special tokens file to a directory. | ||
Args: | ||
save_directory (`str`): | ||
The directory in which to save the vocabulary. | ||
filename_prefix (`str`, *optional*): | ||
An optional prefix to add to the named of the saved files. | ||
Returns: | ||
`Tuple(str)`: Paths to the files saved. | ||
""" | ||
if os.path.isdir(save_directory): | ||
vocab_file = os.path.join( | ||
save_directory, self.vocab_files_names["vocab_file"] | ||
) | ||
else: | ||
vocab_file = save_directory | ||
|
||
with open(self.vocab_file, 'rb') as fin: | ||
proto_str = fin.read() | ||
|
||
with open(vocab_file, "wb") as writer: | ||
writer.write(proto_str) | ||
|
||
return (vocab_file,) | ||
|
||
def get_prefix_tokens(self): | ||
prefix_tokens = [self.get_command("[gMASK]"), self.get_command("sop")] | ||
return prefix_tokens | ||
|
||
def build_prompt(self, query, history=None): | ||
if history is None: | ||
history = [] | ||
prompt = "" | ||
for i, (old_query, response) in enumerate(history): | ||
prompt += "[Round {}]\n\n问:{}\n\n答:{}\n\n".format(i + 1, old_query, response) | ||
prompt += "[Round {}]\n\n问:{}\n\n答:".format(len(history) + 1, query) | ||
return prompt | ||
|
||
def build_inputs_with_special_tokens( | ||
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None | ||
) -> List[int]: | ||
""" | ||
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and | ||
adding special tokens. A BERT sequence has the following format: | ||
- single sequence: `[CLS] X [SEP]` | ||
- pair of sequences: `[CLS] A [SEP] B [SEP]` | ||
Args: | ||
token_ids_0 (`List[int]`): | ||
List of IDs to which the special tokens will be added. | ||
token_ids_1 (`List[int]`, *optional*): | ||
Optional second list of IDs for sequence pairs. | ||
Returns: | ||
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. | ||
""" | ||
prefix_tokens = self.get_prefix_tokens() | ||
token_ids_0 = prefix_tokens + token_ids_0 | ||
if token_ids_1 is not None: | ||
token_ids_0 = token_ids_0 + token_ids_1 + [self.get_command("<eos>")] | ||
return token_ids_0 | ||
|
||
def _pad( | ||
self, | ||
encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding], | ||
max_length: Optional[int] = None, | ||
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, | ||
pad_to_multiple_of: Optional[int] = None, | ||
return_attention_mask: Optional[bool] = None, | ||
) -> dict: | ||
""" | ||
Pad encoded inputs (on left/right and up to predefined length or max length in the batch) | ||
Args: | ||
encoded_inputs: | ||
Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`). | ||
max_length: maximum length of the returned list and optionally padding length (see below). | ||
Will truncate by taking into account the special tokens. | ||
padding_strategy: PaddingStrategy to use for padding. | ||
- PaddingStrategy.LONGEST Pad to the longest sequence in the batch | ||
- PaddingStrategy.MAX_LENGTH: Pad to the max length (default) | ||
- PaddingStrategy.DO_NOT_PAD: Do not pad | ||
The tokenizer padding sides are defined in self.padding_side: | ||
- 'left': pads on the left of the sequences | ||
- 'right': pads on the right of the sequences | ||
pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value. | ||
This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability | ||
`>= 7.5` (Volta). | ||
return_attention_mask: | ||
(optional) Set to False to avoid returning attention mask (default: set to model specifics) | ||
""" | ||
# Load from model defaults | ||
# assert self.padding_side == "left" | ||
|
||
required_input = encoded_inputs[self.model_input_names[0]] | ||
seq_length = len(required_input) | ||
|
||
if padding_strategy == PaddingStrategy.LONGEST: | ||
max_length = len(required_input) | ||
|
||
if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): | ||
max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of | ||
|
||
needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(required_input) != max_length | ||
|
||
# Initialize attention mask if not present. | ||
if "attention_mask" not in encoded_inputs: | ||
encoded_inputs["attention_mask"] = [1] * seq_length | ||
|
||
if "position_ids" not in encoded_inputs: | ||
encoded_inputs["position_ids"] = list(range(seq_length)) | ||
|
||
if needs_to_be_padded: | ||
difference = max_length - len(required_input) | ||
|
||
if self.padding_side == "left": | ||
if "attention_mask" in encoded_inputs: | ||
encoded_inputs["attention_mask"] = [0] * difference + encoded_inputs["attention_mask"] | ||
if "position_ids" in encoded_inputs: | ||
encoded_inputs["position_ids"] = [0] * difference + encoded_inputs["position_ids"] | ||
encoded_inputs[self.model_input_names[0]] = [self.pad_token_id] * difference + required_input | ||
else: | ||
if "attention_mask" in encoded_inputs: | ||
encoded_inputs["attention_mask"] = encoded_inputs["attention_mask"] + [0] * difference | ||
if "position_ids" in encoded_inputs: | ||
encoded_inputs["position_ids"] = encoded_inputs["position_ids"] + [0] * difference | ||
encoded_inputs[self.model_input_names[0]] = required_input + [self.pad_token_id] * difference | ||
|
||
return encoded_inputs |