Skip to content

Commit

Permalink
optimize llama npu perf (#11426)
Browse files Browse the repository at this point in the history
  • Loading branch information
MeouSker77 authored Jun 25, 2024
1 parent e473b8d commit 9f6e5b4
Show file tree
Hide file tree
Showing 4 changed files with 190 additions and 1 deletion.
19 changes: 18 additions & 1 deletion python/llm/src/ipex_llm/transformers/npu_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -27,6 +27,7 @@

from ipex_llm.utils.common.log4Error import invalidInputError
from ipex_llm.transformers.utils import logger
from ipex_llm.transformers.npu_models.convert import optimize_llm


def patch_flash_attn_import(filename: str) -> List[str]:
Expand Down Expand Up @@ -112,7 +113,23 @@ def from_pretrained(cls,
model = cls.HF_Model.from_pretrained(*args, **kwargs)

logger.info(f"Converting model, it may takes up to several minutes ...")
model = npu_lib.compile(model, qtype, False)
try:
# for intel_npu_acceleration_library >= 1.1.0
from intel_npu_acceleration_library.quantization import quantize_model
from intel_npu_acceleration_library.compiler import (
apply_horizontal_fusion, create_npu_kernels
)
with torch.no_grad():
optimize_llm(model)
apply_horizontal_fusion(model)
if not qtype.is_floating_point:
model = quantize_model(model, qtype)
create_npu_kernels(model)
model = model.eval()
except ImportError as _e:
# for intel_npu_acceleration_library < 1.1.0
model = npu_lib.compile(model, qtype, False)
logger.info(f"Finish to convert model")

# add save_low_bit to pretrained model dynamically
model.save_low_bit = types.MethodType(cls.save_low_bit, model)
Expand Down
15 changes: 15 additions & 0 deletions python/llm/src/ipex_llm/transformers/npu_models/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,15 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

34 changes: 34 additions & 0 deletions python/llm/src/ipex_llm/transformers/npu_models/convert.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,34 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import torch


def convert_forward(m, target_m, new_forward):
if m.__class__ == target_m:
bound_method = new_forward.__get__(m, m.__class__)
setattr(m, "forward", bound_method)
for _, sub_m in m.named_children():
convert_forward(sub_m, target_m, new_forward)


def optimize_llm(model: torch.nn.Module):
if model.config.model_type == "llama":
from ipex_llm.transformers.npu_models.llama import merge_qkv
model.apply(merge_qkv)
from ipex_llm.transformers.npu_models.llama import llama_attention_forward
from transformers.models.llama.modeling_llama import LlamaAttention
convert_forward(model, LlamaAttention, llama_attention_forward)
123 changes: 123 additions & 0 deletions python/llm/src/ipex_llm/transformers/npu_models/llama.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,123 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Some parts of this file is adapted from
# https://github.com/huggingface/transformers/blob/v4.40.0/src/transformers/models/llama/modeling_llama.py
# which is licensed under Apache License 2.0:
#
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


from typing import Optional, Tuple
from transformers.cache_utils import Cache

import torch
from transformers.models.llama.modeling_llama import LlamaAttention, repeat_kv, apply_rotary_pos_emb


def merge_qkv(module: torch.nn.Module):
if isinstance(module, LlamaAttention):
new_weight = torch.cat([
module.q_proj.weight.data,
module.k_proj.weight.data,
module.v_proj.weight.data,
], dim=0)

if module.q_proj.bias is not None:
qkv_proj = torch.nn.Linear(0, 0, bias=True)
new_bias = torch.cat([
module.q_proj.bias.data,
module.k_proj.bias.data,
module.v_proj.bias.data,
], dim=0)
qkv_proj.bias = torch.nn.Parameter(new_bias, requires_grad=False)
else:
qkv_proj = torch.nn.Linear(0, 0, bias=False)
qkv_proj.weight = torch.nn.Parameter(new_weight, requires_grad=False)
qkv_proj.in_features = new_weight.size(1)
qkv_proj.out_features = new_weight.size(0)
module.qkv_proj = qkv_proj

del module.q_proj, module.k_proj, module.v_proj


def llama_attention_forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
cache_position: Optional[torch.LongTensor] = None,
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
bsz, q_len, _ = hidden_states.size()

qkv = self.qkv_proj(hidden_states)
qkv = qkv.view(bsz, q_len, self.num_heads + 2 * self.num_key_value_heads, self.head_dim)
qkv = qkv.transpose(1, 2)
query_states, key_states, value_states = qkv.split([self.num_heads,
self.num_key_value_heads,
self.num_key_value_heads], dim=1)

past_key_value = getattr(self, "past_key_value", past_key_value)
cos, sin = self.rotary_emb(value_states, position_ids)
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)

if past_key_value is not None:
# sin and cos are specific to RoPE models; cache_position needed for the static cache
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
key_states, value_states = past_key_value.update(key_states, value_states,
self.layer_idx, cache_kwargs)

key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)

if attention_mask is not None:
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
else:
causal_mask = None

attn_output = torch.nn.functional.scaled_dot_product_attention(
query_states,
key_states,
value_states,
attn_mask=causal_mask,
is_causal=self.is_causal and attention_mask is None and q_len > 1,
)

attn_output = attn_output.transpose(1, 2).contiguous()

attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)

attn_output = self.o_proj(attn_output)

if not output_attentions:
attn_weights = None

return attn_output, attn_weights, past_key_value

0 comments on commit 9f6e5b4

Please sign in to comment.