-
Notifications
You must be signed in to change notification settings - Fork 1.3k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
186 additions
and
0 deletions.
There are no files selected for viewing
186 changes: 186 additions & 0 deletions
186
...gdl/dllib/example/nnframes/gbt/gbtClassifierTrainingExampleOnCriteoClickLogsDataset.scala
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,186 @@ | ||
|
||
package com.intel.analytics.bigdl.dllib.example.nnframes.gbt | ||
|
||
import com.intel.analytics.bigdl.dllib.NNContext | ||
import com.intel.analytics.bigdl.dllib.example.nnframes.xgboost.xgbClassifierTrainingExampleOnCriteoClickLogsDataset.feature_nums | ||
import ml.dmlc.xgboost4j.scala.spark.TrackerConf | ||
import org.apache.spark.ml.Pipeline | ||
import org.apache.spark.ml.classification.GBTClassifier | ||
import org.apache.spark.ml.feature.{StringIndexer, VectorAssembler, VectorIndexer} | ||
import org.apache.spark.sql.types.{LongType, StructField, StructType} | ||
import org.apache.spark.sql.{Row, SQLContext} | ||
import scopt.OptionParser | ||
import org.slf4j.{Logger, LoggerFactory} | ||
|
||
|
||
class Task extends Serializable { | ||
|
||
val default_missing_value = "-999" | ||
|
||
def rowToLibsvm(row: Row): String = { | ||
0 until row.length flatMap { | ||
case 0 => Some(row(0).toString) | ||
case i if row(i) == null => Some(default_missing_value) | ||
case i => Some((if (i < 14) row(i) | ||
else java.lang.Long.parseLong(row(i).toString, 16)).toString) | ||
} mkString " " | ||
} | ||
} | ||
|
||
case class Params( | ||
trainingDataPath: String = "/host/data", | ||
modelSavePath: String = "/host/data/model", | ||
numThreads: Int = 2, | ||
maxIter: Int = 100, | ||
maxDepth: Int = 2, | ||
numWorkers: Int = 1 | ||
) | ||
|
||
object gbtClassifierTrainingExampleOnCriteoClickLogsDataset { | ||
|
||
val feature_nums = 39 | ||
|
||
def main(args: Array[String]): Unit = { | ||
|
||
val log: Logger = LoggerFactory.getLogger(this.getClass) | ||
|
||
|
||
// parse params and set value | ||
|
||
val params = parser.parse(args, new Params).get | ||
val trainingDataPath = params.trainingDataPath // path to data | ||
val modelSavePath = params.modelSavePath // save model to this path | ||
val numThreads = params.numThreads // xgboost threads | ||
val maxIter = params.maxIter // train round | ||
val maxDepth = params.maxDepth // tree max depth | ||
val numWorkers = params.numWorkers // Workers num | ||
|
||
|
||
val sc = NNContext.initNNContext() | ||
// val sc = new SparkContext() | ||
val spark = SQLContext.getOrCreate(sc) | ||
|
||
val task = new Task() | ||
|
||
val tStart = System.nanoTime() | ||
// read csv files to dataframe | ||
var df = spark.read.option("header", "false"). | ||
option("inferSchema", "true").option("delimiter", "\t").csv(trainingDataPath) | ||
|
||
val tBeforePreprocess = System.nanoTime() | ||
var elapsed = (tBeforePreprocess - tStart) / 1000000000.0f // second | ||
log.info("--reading data time is " + elapsed + " s") | ||
// preprocess data | ||
val processedRdd = df.rdd.map(task.rowToLibsvm) | ||
|
||
// declare schema | ||
var structFieldArray = new Array[StructField](feature_nums + 1) | ||
for (i <- 0 to feature_nums) { | ||
structFieldArray(i) = StructField("_c" + i.toString, LongType, true) | ||
} | ||
var schema = new StructType(structFieldArray) | ||
|
||
// convert RDD to RDD[Row] | ||
val rowRDD = processedRdd.map(_.split(" ")).map(row => Row.fromSeq( | ||
for { | ||
i <- 0 to feature_nums | ||
} yield { | ||
row(i).toLong | ||
} | ||
)) | ||
// RDD[Row] to Dataframe | ||
df = spark.createDataFrame(rowRDD, schema) | ||
|
||
|
||
val stringIndexer = new StringIndexer() | ||
.setInputCol("_c0") | ||
.setOutputCol("classIndex") | ||
.fit(df) | ||
val labelTransformed = stringIndexer.transform(df).drop("_c0") | ||
|
||
var inputCols = new Array[String](feature_nums) | ||
for (i <- 0 to feature_nums - 1) { | ||
inputCols(i) = "_c" + (i + 1).toString | ||
} | ||
|
||
val vectorAssembler = new VectorAssembler(). | ||
setInputCols(inputCols). | ||
setOutputCol("features") | ||
|
||
val xgbInput = vectorAssembler.transform(labelTransformed).select("features", "classIndex") | ||
// randomly split dataset to (train, eval1, eval2, test) in proportion 6:2:1:1 | ||
val Array(train, eval1, eval2, test) = xgbInput.randomSplit(Array(0.6, 0.2, 0.1, 0.1)) | ||
|
||
train.cache().count() | ||
eval1.cache().count() | ||
eval2.cache().count() | ||
|
||
val tBeforeTraining = System.nanoTime() | ||
elapsed = (tBeforeTraining - tBeforePreprocess) / 1000000000.0f // second | ||
log.info("--preprocess time is " + elapsed + " s") | ||
// use scala tracker | ||
// val gbtParam = Map("tracker_conf" -> TrackerConf(0L, "scala"), | ||
// "eval_sets" -> Map("eval1" -> eval1, "eval2" -> eval2) | ||
// ) | ||
|
||
// Train a GBT model. | ||
val gbtClassifier = new GBTClassifier() | ||
gbtClassifier.setFeaturesCol("features") | ||
gbtClassifier.setLabelCol("classIndex") | ||
gbtClassifier.setMaxDepth(maxDepth) | ||
gbtClassifier.setMaxIter(maxIter) | ||
// gbtClassifier.setNumClass(2) | ||
// gbtClassifier.setNumWorkers(numWorkers) | ||
// gbtClassifier.setNthread(numThreads) | ||
// gbtClassifier.setNumRound(numRound) | ||
gbtClassifier.setFeatureSubsetStrategy("auto") | ||
// gbtClassifier.setObjective("multi:softprob") | ||
// gbtClassifier.setTimeoutRequestWorkers(180000L) | ||
|
||
|
||
// Train model. This also runs the indexer. | ||
val gbtClassificationModel = gbtClassifier.fit(train) | ||
val tAfterTraining = System.nanoTime() | ||
elapsed = (tAfterTraining - tBeforeTraining) / 1000000000.0f // second | ||
log.info("--training time is " + elapsed + " s") | ||
|
||
gbtClassificationModel.save(modelSavePath) | ||
|
||
val tAfterSave = System.nanoTime() | ||
elapsed = (tAfterSave - tAfterTraining) / 1000000000.0f // second | ||
log.info("--model save time is " + elapsed + " s") | ||
elapsed = (tAfterSave - tStart) / 1000000000.0f // second | ||
log.info("--end-to-end time is " + elapsed + " s") | ||
sc.stop() | ||
} | ||
|
||
val parser: OptionParser[Params] = new OptionParser[Params]("input xgboost config") { | ||
opt[String]('i', "trainingDataPath") | ||
.text("trainingData Path") | ||
.action((v, p) => p.copy(trainingDataPath = v)) | ||
.required() | ||
|
||
opt[String]('s', "modelSavePath") | ||
.text("savePath of model") | ||
.action((v, p) => p.copy(modelSavePath = v)) | ||
.required() | ||
|
||
opt[Int]('t', "numThreads") | ||
.text("threads num") | ||
.action((v, p) => p.copy(numThreads = v)) | ||
|
||
opt[Int]('I', "maxIter") | ||
.text("maxIter") | ||
.action((v, p) => p.copy(maxIter = v)) | ||
|
||
opt[Int]('d', "maxDepth") | ||
.text("maxDepth") | ||
.action((v, p) => p.copy(maxDepth = v)) | ||
|
||
opt[Int]('w', "numWorkers") | ||
.text("Workers num") | ||
.action((v, p) => p.copy(numWorkers = v)) | ||
|
||
} | ||
} | ||
|