Skip to content

Commit

Permalink
add channel_last and data pipeline example (#5345)
Browse files Browse the repository at this point in the history
add channel_last and data pipeline example
  • Loading branch information
zhanglirong1999 authored Aug 17, 2022
1 parent ad17cea commit 61c7187
Show file tree
Hide file tree
Showing 4 changed files with 320 additions and 0 deletions.
1 change: 1 addition & 0 deletions .github/workflows/nano_notebooks_tests.yml
Original file line number Diff line number Diff line change
Expand Up @@ -66,6 +66,7 @@ jobs:
pip install lightning-bolts
bash python/nano/notebooks/pytorch/tutorial/run-nano-notebooks-pytorch-tutorial-tests.sh false
bash python/nano/tutorial/inference/pytorch/run_nano_pytorch_inference_tests_onnx.sh
bash python/nano/tutorial/training/pytorch-lightning/run_nano_pytorch_lightning_test.sh
source $CONDA/bin/deactivate
$CONDA/bin/conda remove -n notebooks-pytorch --all
env:
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,104 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import torch
from torchvision import transforms
from torchvision.datasets import OxfordIIITPet
from torch.utils.data.dataloader import DataLoader
import torch
from torchvision.models import resnet18
from bigdl.nano.pytorch import Trainer
from torchmetrics import Accuracy
import pytorch_lightning as pl


class MyLightningModule(pl.LightningModule):

def __init__(self):
super().__init__()
self.model = resnet18(pretrained=True)
num_ftrs = self.model.fc.in_features
# Here the size of each output sample is set to 37.
self.model.fc = torch.nn.Linear(num_ftrs, 37)
self.criterion = torch.nn.CrossEntropyLoss()

def forward(self, x):
return self.model(x)

def training_step(self, batch, batch_idx):
x, y = batch
output = self.model(x)
loss = self.criterion(output, y)
self.log('train_loss', loss)
return loss

def validation_step(self, batch, batch_idx):
x, y = batch
output = self.forward(x)
loss = self.criterion(output, y)
pred = torch.argmax(output, dim=1)
acc = torch.sum(y == pred).item() / (len(y) * 1.0)
metrics = {'test_acc': acc, 'test_loss': loss}
self.log_dict(metrics)

def configure_optimizers(self):
return torch.optim.SGD(self.parameters(), lr=0.01, momentum=0.9, weight_decay=5e-4)


def create_dataloaders():
train_transform = transforms.Compose([transforms.Resize(256),
transforms.RandomCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ColorJitter(brightness=.5, hue=.3),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406],
[0.229, 0.224, 0.225])])
val_transform = transforms.Compose([transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406],
[0.229, 0.224, 0.225])])

# Apply data augmentation to the tarin_dataset
train_dataset = OxfordIIITPet(root="/tmp/data", transform=train_transform, download=True)
val_dataset = OxfordIIITPet(root="/tmp/data", transform=val_transform)

# obtain training indices that will be used for validation
indices = torch.randperm(len(train_dataset))
val_size = len(train_dataset) // 4
train_dataset = torch.utils.data.Subset(train_dataset, indices[:-val_size])
val_dataset = torch.utils.data.Subset(val_dataset, indices[-val_size:])

# prepare data loaders
train_dataloader = DataLoader(train_dataset, batch_size=32)
val_dataloader = DataLoader(val_dataset, batch_size=32)

return train_dataloader, val_dataloader


if __name__ == "__main__":

model = MyLightningModule()
train_loader, val_loader = create_dataloaders()

# NHWC is an alternative way of describing the tensor dimensions.
# NHWC performance is much better performance than NCHW (contiguous storage of tensor),
# and operator coverage of NHWC would be higher than blocked memory format (to_mkldnn() method),
# so user experience is better.
#
# by setting channels_last=True
trainer = Trainer(max_epochs=5, channels_last=True)
trainer.fit(model, train_dataloaders=train_loader)
trainer.validate(model, dataloaders=val_loader)
Original file line number Diff line number Diff line change
@@ -0,0 +1,204 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import torch
import torchvision
from turbojpeg import TurboJPEG, TJPF_GRAY
from typing import Sequence
from typing import Any, Callable, Optional, Union, Tuple
from torch.utils.data.dataloader import DataLoader
from torchvision.models import resnet18
from bigdl.nano.pytorch import Trainer
from torchmetrics import Accuracy
import pytorch_lightning as pl
from bigdl.nano.pytorch.vision import transforms
from torchvision.datasets.utils import download_and_extract_archive
from os.path import split, join, realpath
import cv2
import os
from logging import warning
from PIL import Image
import urllib.request
import os
import stat

LIB_URL = "https://github.com/leonardozcm/libjpeg-turbo/releases/download/2.1.1/libturbojpeg.so.0.2.0"
# These images in the pet dataset that don't have a proper format.
# Some of them are actually .png files instead .jpg,
# even though they are in .jpg extension.
SPECIAL_IMAGES = [
"/tmp/data/oxford-iiit-pet/images/Egyptian_Mau_14.jpg",
"/tmp/data/oxford-iiit-pet/images/Egyptian_Mau_139.jpg",
"/tmp/data/oxford-iiit-pet/images/Egyptian_Mau_145.jpg",
"/tmp/data/oxford-iiit-pet/images/Egyptian_Mau_156.jpg",
"/tmp/data/oxford-iiit-pet/images/Egyptian_Mau_167.jpg",
"/tmp/data/oxford-iiit-pet/images/Egyptian_Mau_177.jpg",
"/tmp/data/oxford-iiit-pet/images/Egyptian_Mau_186.jpg",
"/tmp/data/oxford-iiit-pet/images/Egyptian_Mau_191.jpg",
"/tmp/data/oxford-iiit-pet/images/Abyssinian_5.jpg",
"/tmp/data/oxford-iiit-pet/images/Abyssinian_34.jpg",
"/tmp/data/oxford-iiit-pet/images/chihuahua_121.jpg",
"/tmp/data/oxford-iiit-pet/images/beagle_116.jpg",
]
def download_libs(url: str):
libs_dir = "/tmp/libs"
if not os.path.exists(libs_dir):
os.makedirs(libs_dir, exist_ok=True)
libso_file_name = url.split('/')[-1]
libso_file = os.path.join(libs_dir, libso_file_name)
if not os.path.exists(libso_file):
print('downloading libturbojpeg.so.0.2.0.....')
urllib.request.urlretrieve(url, libso_file)
st = os.stat(libso_file)
os.chmod(libso_file, st.st_mode | stat.S_IEXEC)
local_libturbo_path = None
_turbo_path = realpath(join(split(realpath(__file__))[0],
"/tmp/libs/libturbojpeg.so.0.2.0"))

if not os.path.exists(_turbo_path):
download_libs(LIB_URL)
local_libturbo_path = _turbo_path

class OxfordIIITPet(torchvision.datasets.OxfordIIITPet):
def __init__(
self,
root: str,
transform: Optional[Callable] = None,
target_transform: Optional[Callable] = None,
download: bool = False,
):
super(OxfordIIITPet, self).__init__(root, transform=transform, target_transform=target_transform, download=download)
self.jpeg: Optional[TurboJPEG] = None

def _read_image_to_bytes(self, path: str):
fd = open(path, 'rb')
img_str = fd.read()
fd.close()
return img_str

def _decode_img_libjpeg_turbo(self, img_str: str):
if self.jpeg is None:
self.jpeg = TurboJPEG(lib_path=local_libturbo_path)
bgr_array = self.jpeg.decode(img_str)
return bgr_array

def __getitem__(self, idx: int):
path = str(self._images[idx])
target: Any = []
for target_type in self._target_types:
if target_type == "category":
target.append(self._labels[idx])
else: # target_type == "segmentation"
target.append(Image.open(self._segs[idx]))

if not target:
target = None
elif len(target) == 1:
target = target[0]
else:
target = tuple(target)

if path in SPECIAL_IMAGES:
img = Image.open(path).convert("RGB")
else:
if path.endswith(".jpg") or path.endswith(".jpeg"):
# Use turbo-jpg to accelerate baseline JPEG compression and decompression.
img_str = self._read_image_to_bytes(path)
img = self._decode_img_libjpeg_turbo(img_str)
else:
img = cv2.imread(path)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
if self.transform:
img, target = self.transforms(img, target)

img = img.numpy()
return img.astype('float32'), target

class MyLightningModule(pl.LightningModule):

def __init__(self):
super().__init__()
self.model = resnet18(pretrained=True)
num_ftrs = self.model.fc.in_features
# Here the size of each output sample is set to 37.
self.model.fc = torch.nn.Linear(num_ftrs, 37)
self.criterion = torch.nn.CrossEntropyLoss()

def forward(self, x):
return self.model(x)

def training_step(self, batch, batch_idx):
x, y = batch
output = self.model(x)
loss = self.criterion(output, y)
self.log('train_loss', loss)
return loss

def validation_step(self, batch, batch_idx):
x, y = batch
output = self.forward(x)
loss = self.criterion(output, y)
pred = torch.argmax(output, dim=1)
acc = torch.sum(y == pred).item() / (len(y) * 1.0)
metrics = {'test_acc': acc, 'test_loss': loss}
self.log_dict(metrics)

def configure_optimizers(self):
return torch.optim.SGD(self.parameters(), lr=0.002, momentum=0.9, weight_decay=5e-4)


def create_dataloaders():
train_transform = transforms.Compose([transforms.Resize(256),
transforms.RandomCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ColorJitter(brightness=.5, hue=.3),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406],
[0.229, 0.224, 0.225])])
val_transform = transforms.Compose([transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406],
[0.229, 0.224, 0.225])])

train_dataset = OxfordIIITPet(root="/tmp/data", transform=train_transform, download=True)
val_dataset = OxfordIIITPet(root="/tmp/data", transform=val_transform)

# obtain training indices that will be used for validation
indices = torch.randperm(len(train_dataset))
val_size = len(train_dataset) // 4
train_dataset = torch.utils.data.Subset(train_dataset, indices[:-val_size])
val_dataset = torch.utils.data.Subset(val_dataset, indices[-val_size:])

# prepare data loaders
train_dataloader = DataLoader(train_dataset, batch_size=32)
val_dataloader = DataLoader(val_dataset, batch_size=32)

return train_dataloader, val_dataloader


if __name__ == "__main__":
# get dataset
model = MyLightningModule()
train_loader, val_loader = create_dataloaders()
# CV Data Pipelines
#
# Computer Vision task often needs a data processing pipeline that sometimes constitutes a
# non-trivial part of the whole training pipeline.
# BigDL-Nano can accelerate computer vision data pipelines.

trainer = Trainer(max_epochs=5)
trainer.fit(model, train_dataloaders=train_loader)
trainer.validate(model, dataloaders=val_loader)
Original file line number Diff line number Diff line change
@@ -0,0 +1,11 @@
export ANALYTICS_ZOO_ROOT=${ANALYTICS_ZOO_ROOT}
export NANO_HOME=${ANALYTICS_ZOO_ROOT}/python/nano/src
export NANO_TUTORIAL_TEST_DIR=${ANALYTICS_ZOO_ROOT}/python/nano/tutorial/training/pytorch-lightning

set -e

sed -i s/Trainer\(max_epochs=5,\ channels_last=True\)/Trainer\(max_epochs=5,\ fast_dev_run=True,\ channels_last=True\)/ $NANO_TUTORIAL_TEST_DIR/lightning_channel_last.py
python $NANO_TUTORIAL_TEST_DIR/lightning_channel_last.py

sed -i s/Trainer\(max_epochs=5\)/Trainer\(max_epochs=5,\ fast_dev_run=True\)/ $NANO_TUTORIAL_TEST_DIR/lightning_cv_data_pipeline.py
python $NANO_TUTORIAL_TEST_DIR/lightning_cv_data_pipeline.py

0 comments on commit 61c7187

Please sign in to comment.