-
Notifications
You must be signed in to change notification settings - Fork 1.3k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
2 changed files
with
177 additions
and
0 deletions.
There are no files selected for viewing
73 changes: 73 additions & 0 deletions
73
python/llm/example/NPU/HF-Transformers-AutoModels/LLM/Save-Load/README.md
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,73 @@ | ||
# Save/Load Low-Bit Models with IPEX-LLM Optimizations | ||
|
||
In this directory, you will find example on how you could save/load models with IPEX-LLM optimizations on Intel NPU. | ||
|
||
## 0. Requirements | ||
To run this example with IPEX-LLM, we have some recommended requirements for your machine, please refer to [here](../README.md#0-requirements) for more information. | ||
|
||
## Example: Save/Load Optimized Models | ||
In the example [generate.py](./generate.py), we show a basic use case of saving/loading model in low-bit optimizations to predict the next N tokens using `generate()` API. Also, saving and loading operations are platform-independent, so you could run it on different platforms. | ||
|
||
## 1. Install | ||
### 1.1 Installation on Windows | ||
We suggest using conda to manage environment: | ||
```cmd | ||
conda create -n llm python=3.10 | ||
conda activate llm | ||
:: install ipex-llm with 'npu' option | ||
pip install --pre --upgrade ipex-llm[npu] | ||
:: [optional] for Llama-3.2-1B-Instruct & Llama-3.2-3B-Instruct | ||
pip install transformers==4.45.0 accelerate==0.33.0 | ||
``` | ||
|
||
## 2. Runtime Configurations | ||
**Following envrionment variables are required**: | ||
|
||
```cmd | ||
set BIGDL_USE_NPU=1 | ||
``` | ||
|
||
## 3. Running examples | ||
|
||
If you want to save the optimized model, run: | ||
``` | ||
python ./generate.py --repo-id-or-model-path "meta-llama/Llama-2-7b-chat-hf" --save-directory path/to/save/model | ||
``` | ||
|
||
If you want to load the optimized low-bit model, run: | ||
``` | ||
python ./generate.py --load-directory path/to/load/model | ||
``` | ||
|
||
In the example, several arguments can be passed to satisfy your requirements: | ||
|
||
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the Llama2 model to be downloaded, or the path to the ModelScope checkpoint folder. It is default to be `'meta-llama/Llama-2-7b-chat-hf'`. | ||
- `--save-directory`: argument defining the path to save the low-bit model. Then you can load the low-bit directly. | ||
- `--load-directory`: argument defining the path to load low-bit model. | ||
- `--prompt PROMPT`: argument defining the prompt to be inferred (with integrated prompt format for chat). It is default to be `'What is AI?'`. | ||
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`. | ||
- `--max-context-len MAX_CONTEXT_LEN`: Defines the maximum sequence length for both input and output tokens. It is default to be `1024`. | ||
- `--max-prompt-len MAX_PROMPT_LEN`: Defines the maximum number of tokens that the input prompt can contain. It is default to be `512`. | ||
|
||
### Sample Output | ||
#### [meta-llama/Llama-2-7b-chat-hf](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf) | ||
```log | ||
Inference time: xxxx s | ||
-------------------- Input -------------------- | ||
<s><s> [INST] <<SYS>> | ||
<</SYS>> | ||
What is AI? [/INST] | ||
-------------------- Output -------------------- | ||
<s><s> [INST] <<SYS>> | ||
<</SYS>> | ||
What is AI? [/INST] | ||
Artificial Intelligence (AI) is a field of computer science and technology that focuses on the development of intelligent machines that can perform tasks that | ||
``` |
104 changes: 104 additions & 0 deletions
104
python/llm/example/NPU/HF-Transformers-AutoModels/LLM/Save-Load/generate.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,104 @@ | ||
# | ||
# Copyright 2016 The BigDL Authors. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
# | ||
|
||
import torch | ||
import time | ||
import argparse | ||
from ipex_llm.transformers.npu_model import AutoModelForCausalLM | ||
from transformers import AutoTokenizer | ||
from ipex_llm.utils.common.log4Error import invalidInputError | ||
|
||
|
||
# you could tune the prompt based on your own model, | ||
LLAMA2_PROMPT_FORMAT = """<s> [INST] <<SYS>> | ||
<</SYS>> | ||
{prompt} [/INST] | ||
""" | ||
|
||
if __name__ == '__main__': | ||
parser = argparse.ArgumentParser(description='Example of saving and loading the optimized model') | ||
parser.add_argument('--repo-id-or-model-path', type=str, default="meta-llama/Llama-2-7b-chat-hf", | ||
help='The huggingface repo id for the Llama2 (e.g. `meta-llama/Llama-2-7b-chat-hf` and `meta-llama/Llama-2-13b-chat-hf`) to be downloaded' | ||
', or the path to the huggingface checkpoint folder') | ||
parser.add_argument('--save-directory', type=str, default=None, | ||
help='The path to save the low-bit model.') | ||
parser.add_argument('--load-directory', type=str, default=None, | ||
help='The path to load the low-bit model.') | ||
parser.add_argument('--prompt', type=str, default="What is AI?", | ||
help='Prompt to infer') | ||
parser.add_argument('--n-predict', type=int, default=32, | ||
help='Max tokens to predict') | ||
parser.add_argument("--max-context-len", type=int, default=1024) | ||
parser.add_argument("--max-prompt-len", type=int, default=512) | ||
|
||
args = parser.parse_args() | ||
model_path = args.repo_id_or_model_path | ||
save_directory = args.save_directory | ||
load_directory = args.load_directory | ||
|
||
if save_directory: | ||
# first time to load and save | ||
model = AutoModelForCausalLM.from_pretrained( | ||
model_path, | ||
torch_dtype=torch.float16, | ||
trust_remote_code=True, | ||
attn_implementation="eager", | ||
load_in_low_bit="sym_int4", | ||
optimize_model=True, | ||
max_context_len=args.max_context_len, | ||
max_prompt_len=args.max_prompt_len, | ||
save_directory=save_directory | ||
) | ||
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) | ||
tokenizer.save_pretrained(save_directory) | ||
print(f"Finish to load model from {model_path} and save to {save_directory}") | ||
elif load_directory: | ||
# load low-bit model | ||
model = AutoModelForCausalLM.load_low_bit( | ||
load_directory, | ||
attn_implementation="eager", | ||
torch_dtype=torch.float16, | ||
optimize_model=True, | ||
max_context_len=args.max_context_len, | ||
max_prompt_len=args.max_prompt_len | ||
) | ||
tokenizer = AutoTokenizer.from_pretrained(load_directory, trust_remote_code=True) | ||
print(f"Finish to load model from {load_directory}") | ||
else: | ||
invalidInputError(False, | ||
"Both `--save-directory` and `--load-directory` are None, please provide one of this.") | ||
|
||
# Generate predicted tokens | ||
with torch.inference_mode(): | ||
for i in range(3): | ||
prompt = LLAMA2_PROMPT_FORMAT.format(prompt=args.prompt) | ||
_input_ids = tokenizer.encode(prompt, return_tensors="pt") | ||
|
||
st = time.time() | ||
output = model.generate( | ||
_input_ids, num_beams=1, do_sample=False, max_new_tokens=args.n_predict | ||
) | ||
end = time.time() | ||
|
||
print(f"Inference time: {end-st} s") | ||
input_str = tokenizer.decode(_input_ids[0], skip_special_tokens=False) | ||
print("-" * 20, "Input", "-" * 20) | ||
print(input_str) | ||
output_str = tokenizer.decode(output[0], skip_special_tokens=False) | ||
print("-" * 20, "Output", "-" * 20) | ||
print(output_str) |