Skip to content

Commit

Permalink
add
Browse files Browse the repository at this point in the history
  • Loading branch information
plusbang committed Dec 4, 2024
1 parent ef4028a commit 534f8d4
Show file tree
Hide file tree
Showing 2 changed files with 177 additions and 0 deletions.
Original file line number Diff line number Diff line change
@@ -0,0 +1,73 @@
# Save/Load Low-Bit Models with IPEX-LLM Optimizations

In this directory, you will find example on how you could save/load models with IPEX-LLM optimizations on Intel NPU.

## 0. Requirements
To run this example with IPEX-LLM, we have some recommended requirements for your machine, please refer to [here](../README.md#0-requirements) for more information.

## Example: Save/Load Optimized Models
In the example [generate.py](./generate.py), we show a basic use case of saving/loading model in low-bit optimizations to predict the next N tokens using `generate()` API. Also, saving and loading operations are platform-independent, so you could run it on different platforms.

## 1. Install
### 1.1 Installation on Windows
We suggest using conda to manage environment:
```cmd
conda create -n llm python=3.10
conda activate llm
:: install ipex-llm with 'npu' option
pip install --pre --upgrade ipex-llm[npu]
:: [optional] for Llama-3.2-1B-Instruct & Llama-3.2-3B-Instruct
pip install transformers==4.45.0 accelerate==0.33.0
```

## 2. Runtime Configurations
**Following envrionment variables are required**:

```cmd
set BIGDL_USE_NPU=1
```

## 3. Running examples

If you want to save the optimized model, run:
```
python ./generate.py --repo-id-or-model-path "meta-llama/Llama-2-7b-chat-hf" --save-directory path/to/save/model
```

If you want to load the optimized low-bit model, run:
```
python ./generate.py --load-directory path/to/load/model
```

In the example, several arguments can be passed to satisfy your requirements:

- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the Llama2 model to be downloaded, or the path to the ModelScope checkpoint folder. It is default to be `'meta-llama/Llama-2-7b-chat-hf'`.
- `--save-directory`: argument defining the path to save the low-bit model. Then you can load the low-bit directly.
- `--load-directory`: argument defining the path to load low-bit model.
- `--prompt PROMPT`: argument defining the prompt to be inferred (with integrated prompt format for chat). It is default to be `'What is AI?'`.
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.
- `--max-context-len MAX_CONTEXT_LEN`: Defines the maximum sequence length for both input and output tokens. It is default to be `1024`.
- `--max-prompt-len MAX_PROMPT_LEN`: Defines the maximum number of tokens that the input prompt can contain. It is default to be `512`.

### Sample Output
#### [meta-llama/Llama-2-7b-chat-hf](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf)
```log
Inference time: xxxx s
-------------------- Input --------------------
<s><s> [INST] <<SYS>>
<</SYS>>
What is AI? [/INST]
-------------------- Output --------------------
<s><s> [INST] <<SYS>>
<</SYS>>
What is AI? [/INST]
Artificial Intelligence (AI) is a field of computer science and technology that focuses on the development of intelligent machines that can perform tasks that
```
Original file line number Diff line number Diff line change
@@ -0,0 +1,104 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

import torch
import time
import argparse
from ipex_llm.transformers.npu_model import AutoModelForCausalLM
from transformers import AutoTokenizer
from ipex_llm.utils.common.log4Error import invalidInputError


# you could tune the prompt based on your own model,
LLAMA2_PROMPT_FORMAT = """<s> [INST] <<SYS>>
<</SYS>>
{prompt} [/INST]
"""

if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Example of saving and loading the optimized model')
parser.add_argument('--repo-id-or-model-path', type=str, default="meta-llama/Llama-2-7b-chat-hf",
help='The huggingface repo id for the Llama2 (e.g. `meta-llama/Llama-2-7b-chat-hf` and `meta-llama/Llama-2-13b-chat-hf`) to be downloaded'
', or the path to the huggingface checkpoint folder')
parser.add_argument('--save-directory', type=str, default=None,
help='The path to save the low-bit model.')
parser.add_argument('--load-directory', type=str, default=None,
help='The path to load the low-bit model.')
parser.add_argument('--prompt', type=str, default="What is AI?",
help='Prompt to infer')
parser.add_argument('--n-predict', type=int, default=32,
help='Max tokens to predict')
parser.add_argument("--max-context-len", type=int, default=1024)
parser.add_argument("--max-prompt-len", type=int, default=512)

args = parser.parse_args()
model_path = args.repo_id_or_model_path
save_directory = args.save_directory
load_directory = args.load_directory

if save_directory:
# first time to load and save
model = AutoModelForCausalLM.from_pretrained(
model_path,
torch_dtype=torch.float16,
trust_remote_code=True,
attn_implementation="eager",
load_in_low_bit="sym_int4",
optimize_model=True,
max_context_len=args.max_context_len,
max_prompt_len=args.max_prompt_len,
save_directory=save_directory
)
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
tokenizer.save_pretrained(save_directory)
print(f"Finish to load model from {model_path} and save to {save_directory}")
elif load_directory:
# load low-bit model
model = AutoModelForCausalLM.load_low_bit(
load_directory,
attn_implementation="eager",
torch_dtype=torch.float16,
optimize_model=True,
max_context_len=args.max_context_len,
max_prompt_len=args.max_prompt_len
)
tokenizer = AutoTokenizer.from_pretrained(load_directory, trust_remote_code=True)
print(f"Finish to load model from {load_directory}")
else:
invalidInputError(False,
"Both `--save-directory` and `--load-directory` are None, please provide one of this.")

# Generate predicted tokens
with torch.inference_mode():
for i in range(3):
prompt = LLAMA2_PROMPT_FORMAT.format(prompt=args.prompt)
_input_ids = tokenizer.encode(prompt, return_tensors="pt")

st = time.time()
output = model.generate(
_input_ids, num_beams=1, do_sample=False, max_new_tokens=args.n_predict
)
end = time.time()

print(f"Inference time: {end-st} s")
input_str = tokenizer.decode(_input_ids[0], skip_special_tokens=False)
print("-" * 20, "Input", "-" * 20)
print(input_str)
output_str = tokenizer.decode(output[0], skip_special_tokens=False)
print("-" * 20, "Output", "-" * 20)
print(output_str)

0 comments on commit 534f8d4

Please sign in to comment.