-
Notifications
You must be signed in to change notification settings - Fork 1.3k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* chatglm4 * update * update * add rms norm * chatglm4
- Loading branch information
1 parent
eeffeeb
commit 2f80911
Showing
2 changed files
with
339 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
321 changes: 321 additions & 0 deletions
321
python/llm/src/ipex_llm/transformers/models/chatglm4.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,321 @@ | ||
# | ||
# Copyright 2016 The BigDL Authors. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
# | ||
# This file is adapted from | ||
# https://huggingface.co/THUDM/chatglm2-6b-32k/blob/main/configuration_chatglm.py | ||
# | ||
|
||
import torch | ||
from typing import Optional, Tuple, Union, List, Callable, Dict, Any | ||
import torch.nn.functional as F | ||
from ipex_llm.transformers.models.utils import init_kv_cache, extend_kv_cache, append_kv_cache | ||
from ipex_llm.transformers.models.utils import use_quantize_kv_cache, apply_ipex_rotate_every_two | ||
from transformers.modeling_outputs import BaseModelOutputWithPast | ||
|
||
|
||
import os | ||
|
||
KV_CACHE_ALLOC_BLOCK_LENGTH = int(os.environ.get("KV_CACHE_ALLOC_BLOCK_LENGTH", 256)) | ||
KV_CACHE_ALLOC_MIN_LENGTH = 512 | ||
|
||
|
||
def split_tensor_along_last_dim( | ||
tensor: torch.Tensor, | ||
num_partitions: int, | ||
contiguous_split_chunks: bool = False, | ||
) -> List[torch.Tensor]: | ||
"""Split a tensor along its last dimension. | ||
Arguments: | ||
tensor: input tensor. | ||
num_partitions: number of partitions to split the tensor | ||
contiguous_split_chunks: If True, make each chunk contiguous | ||
in memory. | ||
Returns: | ||
A list of Tensors | ||
""" | ||
# Get the size and dimension. | ||
last_dim = tensor.dim() - 1 | ||
last_dim_size = tensor.size()[last_dim] // num_partitions | ||
# Split. | ||
tensor_list = torch.split(tensor, last_dim_size, dim=last_dim) | ||
# Note: torch.split does not create contiguous tensors by default. | ||
if contiguous_split_chunks: | ||
return tuple(chunk.contiguous() for chunk in tensor_list) | ||
|
||
return tensor_list | ||
|
||
|
||
def chatglm4_model_forward( | ||
self, | ||
input_ids, | ||
position_ids: Optional[torch.Tensor] = None, | ||
attention_mask: Optional[torch.BoolTensor] = None, | ||
full_attention_mask: Optional[torch.BoolTensor] = None, | ||
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]]=None, | ||
inputs_embeds: Optional[torch.Tensor] = None, | ||
use_cache: Optional[bool] = None, | ||
output_hidden_states: Optional[bool] = None, | ||
return_dict: Optional[bool] = None, | ||
) -> Union[Tuple, BaseModelOutputWithPast]: | ||
from ipex_llm.transformers.kv import DynamicFp8Cache | ||
use_cache = use_cache if use_cache is not None else self.config.use_cache | ||
# if use_cache and use_quantize_kv_cache( | ||
# self.encoder.layers[0].self_attention.query_key_value, input_ids): | ||
# if not isinstance(past_key_values, DynamicFp8Cache): | ||
# past_key_values = DynamicFp8Cache.from_legacy_cache(past_key_values) | ||
return chatglm4_model_forward_internal( | ||
self=self, | ||
input_ids=input_ids, | ||
position_ids=position_ids, | ||
attention_mask=attention_mask, | ||
full_attention_mask=full_attention_mask, | ||
past_key_values=past_key_values, | ||
inputs_embeds=inputs_embeds, | ||
use_cache=use_cache, | ||
output_hidden_states=output_hidden_states, | ||
return_dict=return_dict, | ||
) | ||
|
||
|
||
def chatglm4_model_forward_internal( | ||
self, | ||
input_ids, | ||
position_ids: Optional[torch.Tensor] = None, | ||
attention_mask: Optional[torch.BoolTensor] = None, | ||
full_attention_mask: Optional[torch.BoolTensor] = None, | ||
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]]=None, | ||
inputs_embeds: Optional[torch.Tensor] = None, | ||
use_cache: Optional[bool] = None, | ||
output_hidden_states: Optional[bool] = None, | ||
return_dict: Optional[bool] = None, | ||
): | ||
output_hidden_states = ( | ||
output_hidden_states if output_hidden_states is not None else | ||
self.config.output_hidden_states | ||
) | ||
use_cache = use_cache if use_cache is not None else self.config.use_cache | ||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | ||
|
||
batch_size, seq_length = input_ids.shape | ||
|
||
if inputs_embeds is None: | ||
inputs_embeds = self.embedding(input_ids) | ||
|
||
if full_attention_mask is None: | ||
if (attention_mask is not None and not attention_mask.all()) or\ | ||
(past_key_values and seq_length != 1): | ||
full_attention_mask = self.get_masks(input_ids, | ||
past_key_values, | ||
padding_mask=attention_mask) | ||
|
||
use_fuse_rope = input_ids.device.type == "xpu" | ||
use_fuse_rope = use_fuse_rope and not self.training | ||
|
||
# Rotary positional embeddings | ||
rotary_pos_emb = self.rotary_pos_emb(self.seq_length) | ||
if position_ids is not None: | ||
rotary_pos_emb = rotary_pos_emb[position_ids] | ||
else: | ||
rotary_pos_emb = rotary_pos_emb[None, :seq_length] | ||
if use_fuse_rope: | ||
# Repeat cos sin here, call only once for each token. | ||
# Chatglm2's rotary embedding is similar to gptj's, is rotate_every_two. | ||
# If put this to attension forward, it will generate too many times. | ||
cos, sin = rotary_pos_emb.split(rotary_pos_emb.shape[-1] // 2, dim=-1) | ||
cos = cos.squeeze(-1) | ||
sin = sin.squeeze(-1) | ||
cos = torch.repeat_interleave(cos[:, :, None, :], 2, 3) | ||
sin = torch.repeat_interleave(sin[:, :, None, :], 2, 3) | ||
rotary_pos_emb = (cos, sin) | ||
|
||
# Run encoder. | ||
hidden_states, presents, all_hidden_states, all_self_attentions = self.encoder( | ||
inputs_embeds, full_attention_mask, rotary_pos_emb=rotary_pos_emb, | ||
kv_caches=past_key_values, use_cache=use_cache, output_hidden_states=output_hidden_states | ||
) | ||
if presents is not None and type(presents) is torch.Tensor: | ||
presents = presents.split(1, dim=0) | ||
presents = list(presents) | ||
presents = [list(x.squeeze(0).split(1, dim=0)) for x in presents] | ||
presents = [tuple([x.squeeze(0) for x in y]) for y in presents] | ||
presents = tuple(presents) | ||
|
||
if not return_dict: | ||
return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] | ||
if v is not None) | ||
|
||
return BaseModelOutputWithPast( | ||
last_hidden_state=hidden_states, | ||
past_key_values=presents, | ||
hidden_states=all_hidden_states, | ||
attentions=all_self_attentions, | ||
) | ||
|
||
|
||
@torch.jit.script | ||
def apply_rotary_pos_emb(x: torch.Tensor, rope_cache: torch.Tensor) -> torch.Tensor: | ||
# x: [b, np, sq, hn] | ||
b, np, sq, hn = x.size(0), x.size(1), x.size(2), x.size(3) | ||
rot_dim = rope_cache.shape[-2] * 2 | ||
x, x_pass = x[..., :rot_dim], x[..., rot_dim:] | ||
# truncate to support variable sizes | ||
rope_cache = rope_cache[:, :sq] | ||
xshaped = x.reshape(b, np, sq, rot_dim // 2, 2) | ||
rope_cache = rope_cache.view(-1, 1, sq, xshaped.size(3), 2) | ||
x_out2 = torch.stack( | ||
[ | ||
xshaped[..., 0] * rope_cache[..., 0] - xshaped[..., 1] * rope_cache[..., 1], | ||
xshaped[..., 1] * rope_cache[..., 0] + xshaped[..., 0] * rope_cache[..., 1], | ||
], | ||
-1, | ||
) | ||
x_out2 = x_out2.flatten(3) | ||
return torch.cat((x_out2, x_pass), dim=-1) | ||
|
||
|
||
def chatglm4_attention_forward( | ||
self, hidden_states, attention_mask, rotary_pos_emb, kv_cache=None, use_cache=True | ||
): | ||
# hidden_states: [sq, b, h] | ||
|
||
# ================================================= | ||
# Pre-allocate memory for key-values for inference. | ||
# ================================================= | ||
# ===================== | ||
# Query, Key, and Value | ||
# ===================== | ||
|
||
# Attention heads [sq, b, h] --> [sq, b, (np * 3 * hn)] | ||
device = hidden_states.device | ||
mixed_x_layer = self.query_key_value(hidden_states) | ||
|
||
if self.multi_query_attention: | ||
(query_layer, key_layer, value_layer) = mixed_x_layer.split( | ||
[ | ||
self.num_attention_heads_per_partition * self.hidden_size_per_attention_head, | ||
self.num_multi_query_groups_per_partition * self.hidden_size_per_attention_head, | ||
self.num_multi_query_groups_per_partition * self.hidden_size_per_attention_head, | ||
], | ||
dim=-1, | ||
) | ||
query_layer = query_layer.view( | ||
query_layer.size()[:-1] + (self.num_attention_heads_per_partition, | ||
self.hidden_size_per_attention_head) | ||
) | ||
key_layer = key_layer.view( | ||
key_layer.size()[:-1] + (self.num_multi_query_groups_per_partition, | ||
self.hidden_size_per_attention_head) | ||
) | ||
value_layer = value_layer.view( | ||
value_layer.size()[:-1] | ||
+ (self.num_multi_query_groups_per_partition, self.hidden_size_per_attention_head) | ||
) | ||
else: | ||
new_tensor_shape = mixed_x_layer.size()[:-1] + (self.num_attention_heads_per_partition, | ||
3 * self.hidden_size_per_attention_head) | ||
mixed_x_layer = mixed_x_layer.view(*new_tensor_shape) | ||
|
||
# [sq, b, np, 3 * hn] --> 3 [sq, b, np, hn] | ||
(query_layer, key_layer, value_layer) = split_tensor_along_last_dim(mixed_x_layer, 3) | ||
|
||
# [b, sq, np, hn] -> [b, np, sq, hn] | ||
query_layer, key_layer, value_layer = [k.transpose(1, 2) | ||
for k in [query_layer, key_layer, value_layer]] | ||
|
||
# apply relative positional encoding (rotary embedding) | ||
if isinstance(rotary_pos_emb, tuple) and len(rotary_pos_emb) == 2: | ||
# use_fuse_rope, see chatglm2_model_forward | ||
cos, sin = rotary_pos_emb | ||
rot_dim = cos.shape[-1] | ||
query_layer = query_layer.transpose(1, 2) | ||
key_layer = key_layer.transpose(1, 2) | ||
query_layer_cur = query_layer[..., :rot_dim] | ||
key_layer_cur = key_layer[..., :rot_dim] | ||
# ipex_llm's apply_rotary_embedding can change the origin storage, | ||
# so query_layer will get the result directly. | ||
torch.ops.torch_ipex.apply_rotary_embedding(query_layer_cur, sin, cos, query_layer_cur) | ||
torch.ops.torch_ipex.apply_rotary_embedding(key_layer_cur, sin, cos, key_layer_cur) | ||
query_layer = query_layer.transpose(1, 2) | ||
key_layer = key_layer.transpose(1, 2) | ||
elif rotary_pos_emb is not None: | ||
query_layer = apply_rotary_pos_emb(query_layer, rotary_pos_emb) | ||
key_layer = apply_rotary_pos_emb(key_layer, rotary_pos_emb) | ||
|
||
cur_length, batch_size = query_layer.shape[2], query_layer.shape[0] | ||
|
||
# adjust key and value for inference | ||
if kv_cache is not None and use_cache: | ||
cache_k, cache_v = kv_cache | ||
past_length = cache_k.size(2) | ||
|
||
if cache_k.stride()[1] < (past_length + cur_length) * cache_k.size(3): | ||
max_cache_length = past_length + cur_length + KV_CACHE_ALLOC_BLOCK_LENGTH | ||
new_cache_k, new_cache_v = extend_kv_cache(batch_size, | ||
key_layer.size(1), | ||
self.hidden_size_per_attention_head, | ||
past_length, | ||
max_cache_length, | ||
dtype=query_layer.dtype, | ||
device=device) | ||
new_cache_k[:] = cache_k | ||
new_cache_v[:] = cache_v | ||
cache_k = new_cache_k | ||
cache_v = new_cache_v | ||
|
||
key_layer, value_layer = append_kv_cache(cache_k, cache_v, key_layer, value_layer) | ||
|
||
if use_cache: | ||
if kv_cache is None: | ||
kv_cache = torch.cat((key_layer.unsqueeze(0).unsqueeze(0), | ||
value_layer.unsqueeze(0).unsqueeze(0)), dim=1) | ||
else: | ||
kv_cache = (key_layer, value_layer) | ||
else: | ||
kv_cache = None | ||
|
||
if self.multi_query_attention: | ||
key_layer = key_layer.unsqueeze(2) | ||
key_layer = key_layer.expand( | ||
-1, -1, | ||
self.num_attention_heads_per_partition // self.num_multi_query_groups_per_partition, | ||
-1, -1 | ||
) | ||
key_layer = key_layer.contiguous().view( | ||
key_layer.size()[:1] + (self.num_attention_heads_per_partition,) + key_layer.size()[3:] | ||
) | ||
value_layer = value_layer.unsqueeze(2) | ||
value_layer = value_layer.expand( | ||
-1, -1, | ||
self.num_attention_heads_per_partition // self.num_multi_query_groups_per_partition, | ||
-1, -1 | ||
) | ||
value_layer = value_layer.contiguous().view( | ||
value_layer.size()[:1] + | ||
(self.num_attention_heads_per_partition,) + value_layer.size()[3:] | ||
) | ||
|
||
# ================================== | ||
# core attention computation | ||
# ================================== | ||
|
||
context_layer = self.core_attention(query_layer, key_layer, value_layer, attention_mask) | ||
|
||
# ================= | ||
# Output. [sq, b, h] | ||
# ================= | ||
|
||
output = self.dense(context_layer) | ||
|
||
return output, kv_cache |