Skip to content

Commit

Permalink
Merge pull request #10226 from zhentaocc/fix_harness
Browse files Browse the repository at this point in the history
Fix harness
  • Loading branch information
hxsz1997 authored Feb 26, 2024
2 parents f9b75f9 + 62350a3 commit 15ad2fd
Show file tree
Hide file tree
Showing 4 changed files with 155 additions and 104 deletions.
111 changes: 43 additions & 68 deletions .github/workflows/llm-harness-evaluation.yml
Original file line number Diff line number Diff line change
Expand Up @@ -70,9 +70,9 @@ jobs:
- name: set-pr-env
if: ${{github.event_name == 'pull_request'}}
env:
PR_MATRIX_MODEL_NAME: '["Mistral-7B-v0.1"]'
PR_MATRIX_TASK: '["arc", "truthfulqa", "winogrande"]'
PR_MATRIX_PRECISION: '["fp8"]'
PR_MATRIX_MODEL_NAME: '["stablelm-3b-4e1t"]'
PR_MATRIX_TASK: '["winogrande"]'
PR_MATRIX_PRECISION: '["sym_int4"]'
PR_LABELS: '["self-hosted", "llm", "temp-arc01"]'

run: |
Expand Down Expand Up @@ -112,8 +112,6 @@ jobs:
device: [xpu]

runs-on: ${{ fromJson(needs.set-matrix.outputs.runner) }}
outputs:
output_path: ${{ steps.run_harness.outputs.output_path }}
env:
ANALYTICS_ZOO_ROOT: ${{ github.workspace }}
ORIGIN_DIR: /mnt/disk1/models
Expand Down Expand Up @@ -146,7 +144,10 @@ jobs:
working-directory: ${{ github.workspace }}/python/llm/dev/benchmark/harness/
shell: bash
run: |
pip install git+https://github.com/EleutherAI/lm-evaluation-harness.git@b281b09
git clone https://github.com/EleutherAI/lm-evaluation-harness.git
cd lm-evaluation-harness
git checkout b281b09
pip install -e .
- name: Download models and datasets
shell: bash
Expand All @@ -164,35 +165,13 @@ jobs:
run: |
pip install --upgrade datasets==2.14.6
if [ "${{ matrix.model_name }}" = "Mistral-7B-v0.1" ]; then
pip install --upgrade transformers==4.36
pip install --upgrade transformers==4.36
else
pip install --upgrade transformers==4.31
pip install --upgrade transformers==4.31
fi

- name: Run harness nightly
if: ${{github.event_name == 'schedule'}}
shell: bash
working-directory: ${{ github.workspace }}/python/llm/dev/benchmark/harness
env:
USE_XETLA: OFF
# SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS: 1
run: |
export HF_HOME=${HARNESS_HF_HOME}
export HF_DATASETS=$HARNESS_HF_HOME/datasets
export HF_DATASETS_CACHE=$HARNESS_HF_HOME/datasets
source /opt/intel/oneapi/setvars.sh
python run_llb.py \
--model bigdl-llm \
--pretrained ${MODEL_PATH} \
--precision ${{ matrix.precision }} \
--device ${{ matrix.device }} \
--tasks ${{ matrix.task }} \
--batch_size 1 --no_cache --output_path results \
- name: Run harness pr
if: ${{github.event_name == 'pull_request'}}
- name: Run harness
shell: bash
working-directory: ${{ github.workspace }}/python/llm/dev/benchmark/harness
env:
Expand All @@ -204,14 +183,19 @@ jobs:
export HF_DATASETS_CACHE=$HARNESS_HF_HOME/datasets
source /opt/intel/oneapi/setvars.sh
# set --limit if it's pr-triggered to accelerate pr action
if ${{github.event_name == 'pull_request'}}; then
export LIMIT="--limit 4"
fi
python run_llb.py \
--model bigdl-llm \
--pretrained ${MODEL_PATH} \
--precision ${{ matrix.precision }} \
--device ${{ matrix.device }} \
--tasks ${{ matrix.task }} \
--batch_size 1 --no_cache --output_path results \
--limit 3 \
$LIMIT
- uses: actions/upload-artifact@v3
with:
Expand Down Expand Up @@ -250,12 +234,12 @@ jobs:
shell: bash
run: |
ls results
python ${{ github.workspace }}/python/llm/dev/benchmark/harness/make_table_and_csv.py results
python ${{ github.workspace }}/python/llm/dev/benchmark/harness/make_table.py results
# TODO: change machine to store the results later
llm-harness-summary-html:
llm-harness-html:
if: ${{github.event_name == 'schedule' || github.event_name == 'pull_request'}}
needs: [set-matrix, llm-harness-evaluation]
needs: [llm-harness-evaluation]
runs-on: ["self-hosted", "llm", "accuracy1", "accuracy-nightly"]
steps:
- uses: actions/checkout@f43a0e5ff2bd294095638e18286ca9a3d1956744 # actions/checkout@v3
Expand All @@ -268,54 +252,45 @@ jobs:
run: |
pip install --upgrade pip
pip install jsonlines pytablewriter regex
pip install pandas==1.5.3
- name: Set output path
shell: bash
run: |
DATE=$(date +%Y-%m-%d)
OUTPUT_PATH="results_$DATE"
echo "OUTPUT_PATH=$OUTPUT_PATH" >> $GITHUB_ENV
NIGHTLY_FOLDER="/home/arda/harness-action-runners/nightly-accuracy-data"
echo "NIGHTLY_FOLDER=$NIGHTLY_FOLDER" >> $GITHUB_ENV
PR_FOLDER="/home/arda/harness-action-runners/pr-accuracy-data"
echo "PR_FOLDER=$PR_FOLDER" >> $GITHUB_ENV
echo "DATE=$(date +%Y-%m-%d)" >> $GITHUB_ENV
if ${{github.event_name == 'pull_request'}}; then
echo 'ACC_FOLDER=/home/arda/harness-action-runners/pr-accuracy-data' >> $GITHUB_ENV
fi
if ${{github.event_name == 'schedule'}}; then
echo 'ACC_FOLDER=/home/arda/harness-action-runners/nightly-accuracy-data' >> $GITHUB_ENV
fi
- name: Download all results for nightly run
if: github.event_name == 'schedule'
uses: actions/download-artifact@v3
with:
name: harness_results
path: ${{ env.NIGHTLY_FOLDER}}/${{ env.OUTPUT_PATH }}

- name: Download all results for pr run
if: github.event_name == 'pull_request'
- name: Download harness results
uses: actions/download-artifact@v3
with:
name: harness_results
path: ${{ env.PR_FOLDER}}/${{ env.OUTPUT_PATH }}
path: ${{ env.ACC_FOLDER}}/${{ env.DATE }}


# Save fp16.csv in the parent folder of env.nightly_folder
- name: Download fp16.csv for summary
- name: Download FP16 results
shell: bash
run: |
wget https://raw.githubusercontent.com/intel-analytics/BigDL/main/python/llm/test/benchmark/harness/fp16.csv -O ${{ env.NIGHTLY_FOLDER}}/../fp16.csv
ls ${{ env.NIGHTLY_FOLDER}}/..
wget https://raw.githubusercontent.com/intel-analytics/BigDL/main/python/llm/test/benchmark/harness/fp16.csv -O $ACC_FOLDER/../fp16.csv
ls $ACC_FOLDER/..
- name: Summarize the results for nightly run
if: github.event_name == 'schedule'
- name: Write to CSV
working-directory: ${{ github.workspace }}/python/llm/dev/benchmark/harness
shell: bash
run: |
ls /home/arda/harness-action-runners/nightly-accuracy-data/${{ env.OUTPUT_PATH }}
pip install pandas==1.5.3
python ${{ github.workspace }}/python/llm/dev/benchmark/harness/make_table_and_csv.py ${{ env.NIGHTLY_FOLDER}}/${{ env.OUTPUT_PATH }} ${{ env.NIGHTLY_FOLDER}}
python ${{ github.workspace }}/python/llm/test/benchmark/harness/harness_csv_to_html.py -f ${{ env.NIGHTLY_FOLDER}}
python ${{ github.workspace }}/python/llm/test/benchmark/harness/update_html_in_parent_folder.py -f ${{ env.NIGHTLY_FOLDER }}
ls $ACC_FOLDER/$DATE
python make_csv.py $ACC_FOLDER/$DATE $ACC_FOLDER
- name: Summarize the results for pull request
if: github.event_name == 'pull_request'
- name: Update HTML
working-directory: ${{ github.workspace }}/python/llm/test/benchmark/harness
shell: bash
run: |
ls /home/arda/harness-action-runners/pr-accuracy-data/${{ env.OUTPUT_PATH }}
pip install pandas==1.5.3
python ${{ github.workspace }}/python/llm/dev/benchmark/harness/make_table_and_csv.py ${{ env.PR_FOLDER}}/${{ env.OUTPUT_PATH }} ${{ env.PR_FOLDER}}
python ${{ github.workspace }}/python/llm/test/benchmark/harness/harness_csv_to_html.py -f ${{ env.PR_FOLDER}}
python harness_csv_to_html.py -f $ACC_FOLDER
if ${{github.event_name == 'schedule'}}; then
python update_html_in_parent_folder.py -f $ACC_FOLDER
fi
9 changes: 8 additions & 1 deletion python/llm/dev/benchmark/harness/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -5,7 +5,10 @@ Before running, make sure to have [bigdl-llm](../../../README.md) installed.

## Install Harness
```bash
pip install git+https://github.com/EleutherAI/lm-evaluation-harness.git@b281b09
git clone https://github.com/EleutherAI/lm-evaluation-harness.git
cd lm-evaluation-harness
git checkout b281b09
pip install -e .
```

## Run
Expand All @@ -26,3 +29,7 @@ python run_multi_llb.py --model bigdl-llm --pretrained /path/to/model --precisio
Taking example above, the script will fork 3 processes, each for one xpu, to execute the tasks.
## Results
We follow [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) to record our metrics, `acc_norm` for `hellaswag` and `arc_challenge`, `mc2` for `truthful_qa` and `acc` for `mmlu`. For `mmlu`, there are 57 subtasks which means users may need to average them manually to get final result.
## Summarize the results
"""python
python make_table.py <input_dir>
"""
102 changes: 102 additions & 0 deletions python/llm/dev/benchmark/harness/make_csv.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,102 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
"""
Usage:
python make_csv.py <input_dir> <output_dir>
"""

import logging
from pytablewriter import MarkdownTableWriter, LatexTableWriter
import os
import json
import sys
import csv
import datetime
from harness_to_leaderboard import task_to_metric


logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)


def make_csv(result_dict, output_path=None):
current_date = datetime.datetime.now().strftime("%Y-%m-%d")
file_name = f'results_{current_date}.csv'
full_path = os.path.join(output_path, file_name) if output_path else file_name
print('Writing to', full_path)
file_name = full_path
headers = ["Index", "Model", "Precision", "Arc", "TruthfulQA", "Winogrande"]

with open(file_name, mode='w', newline='') as csv_file:
writer = csv.writer(csv_file)
writer.writerow(headers)
index = 0
for model, model_results in result_dict.items():
for precision, prec_results in model_results.items():
row = [index, model, precision]
for task in headers[3:]:
task_results = prec_results.get(task.lower(), None)
if task_results is None:
row.append("")
else:
m = task_to_metric[task.lower()]
results = task_results["results"]
result = list(results.values())[0] if len(results) == 1 else results[task.lower()]
row.append("%.2f" % (result[m] * 100))
writer.writerow(row)
index += 1


def merge_results(path):
# loop dirs and subdirs in results dir
# for each dir, load json files
print('Read from', path)
merged_results = dict()
for dirpath, dirnames, filenames in os.walk(path):
# skip dirs without files
if not filenames:
continue
for filename in sorted([f for f in filenames if f.endswith("result.json")]):
path = os.path.join(dirpath, filename)
model, device, precision, task = dirpath.split('/')[-4:]
with open(path, "r") as f:
result_dict = json.load(f)
if model not in merged_results:
merged_results[model] = dict()
if precision not in merged_results[model]:
merged_results[model][precision] = dict()
merged_results[model][precision][task] = result_dict
return merged_results


def main(*args):
assert len(args) > 2, \
"""Usage:
python make_csv.py <input_dir> <output_dir>
"""

input_path = args[1]
output_path = args[2]


merged_results = merge_results(input_path)
make_csv(merged_results, output_path)


if __name__ == "__main__":
# when running from the harness, the first argument is the script name
# you must name the second argument and the third argument(optional) to be the input_dir and output_dir
main(*sys.argv)
Original file line number Diff line number Diff line change
Expand Up @@ -15,7 +15,7 @@
#
"""
Usage:
python make_table_results.py <input_dir>
python make_table.py <input_dir>
"""

import logging
Expand Down Expand Up @@ -69,40 +69,13 @@ def make_table(result_dict):

return md_writer.dumps()

def make_csv(result_dict, output_path=None):
current_date = datetime.datetime.now().strftime("%Y-%m-%d")
file_name = f'results_{current_date}.csv'
full_path = os.path.join(output_path, file_name) if output_path else file_name
print('Writing to', full_path)
file_name = full_path
headers = ["Index", "Model", "Precision", "Arc", "TruthfulQA", "Winogrande"]

with open(file_name, mode='w', newline='') as csv_file:
writer = csv.writer(csv_file)
writer.writerow(headers)
index = 0
for model, model_results in result_dict.items():
for precision, prec_results in model_results.items():
row = [index, model, precision]
for task in headers[3:]:
task_results = prec_results.get(task.lower(), None)
if task_results is None:
row.append("")
else:
m = task_to_metric[task.lower()]
results = task_results["results"]
result = list(results.values())[0] if len(results) == 1 else results[task.lower()]
row.append("%.2f" % (result[m] * 100))
writer.writerow(row)
index += 1


def merge_results(path):
# loop dirs and subdirs in results dir
# for each dir, load json files
print('Read from', path)
merged_results = dict()
for dirpath, dirnames, filenames in os.walk(sys.argv[1]):
for dirpath, dirnames, filenames in os.walk(path):
# skip dirs without files
if not filenames:
continue
Expand All @@ -124,14 +97,8 @@ def main(*args):
input_path = args[1]
else:
raise ValueError("Input path is required")

if len(args) > 2:
output_path = args[2] # use the third argument as the output path
else:
output_path = "./" # default to current directory

merged_results = merge_results(input_path)
make_csv(merged_results, output_path)
print(make_table(merged_results))


Expand Down

0 comments on commit 15ad2fd

Please sign in to comment.