Skip to content

Commit

Permalink
add chatglm3 npu support (#11518)
Browse files Browse the repository at this point in the history
  • Loading branch information
MeouSker77 authored Jul 5, 2024
1 parent a31f2cb commit 14ce058
Show file tree
Hide file tree
Showing 2 changed files with 275 additions and 0 deletions.
265 changes: 265 additions & 0 deletions python/llm/src/ipex_llm/transformers/npu_models/chatglm.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,265 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# This file is adapted from
# https://huggingface.co/THUDM/chatglm2-6b/blob/8eb45c842594b8473f291d0f94e7bbe86ffc67d8/modeling_chatglm.py
#

import math
import torch
from typing import Optional, Tuple
from transformers.modeling_outputs import BaseModelOutputWithPast
from ipex_llm.transformers.models.utils import update_past_key_value


def chatglm2_model_forward(
self,
input_ids,
position_ids: Optional[torch.Tensor]=None,
attention_mask: Optional[torch.BoolTensor]=None,
full_attention_mask: Optional[torch.BoolTensor]=None,
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]]=None,
inputs_embeds: Optional[torch.Tensor]=None,
use_cache: Optional[bool]=None,
output_hidden_states: Optional[bool]=None,
return_dict: Optional[bool]=None,
):
output_hidden_states = (
output_hidden_states if output_hidden_states is not None
else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict

if inputs_embeds is None:
batch_size, seq_length = input_ids.shape
inputs_embeds = self.embedding(input_ids)
else:
inputs_embeds = inputs_embeds.transpose(0, 1).contiguous()
seq_length, batch_size, _ = inputs_embeds.shape
input_ids = torch.empty((batch_size, seq_length),
dtype=inputs_embeds.dtype, device=inputs_embeds.device)

if full_attention_mask is None:
if (attention_mask is not None and not attention_mask.all()) or (
past_key_values and seq_length != 1):
full_attention_mask = self.get_masks(input_ids,
past_key_values,
padding_mask=attention_mask)

rotary_pos_emb = self.rotary_pos_emb(self.seq_length)
if position_ids is not None:
rotary_pos_emb = rotary_pos_emb[position_ids]
else:
rotary_pos_emb = rotary_pos_emb[None, :seq_length]
rotary_pos_emb = rotary_pos_emb.transpose(0, 1).contiguous()

# ipex-llm changes begin:
# generate `causal_mask` and replace `full_attention_mask` with it
#
# `full_attention_mask` is not None only when
# `past_key_values` is not None and `seq_length` > 1
if full_attention_mask is not None:
causal_mask = torch.zeros([batch_size, 1, seq_length, full_attention_mask.size(-1)],
dtype=inputs_embeds.dtype, device=inputs_embeds.device)
mask_value = torch.finfo(inputs_embeds.dtype).min
causal_mask.masked_fill_(full_attention_mask, mask_value)
elif self.training or (inputs_embeds.device.type != "xpu" and past_key_values is None):
full_attention_mask = self.get_masks(input_ids,
past_key_values,
padding_mask=attention_mask)
causal_mask = torch.zeros([batch_size, 1, seq_length, full_attention_mask.size(-1)],
dtype=inputs_embeds.dtype, device=inputs_embeds.device)
mask_value = torch.finfo(inputs_embeds.dtype).min
causal_mask.masked_fill_(full_attention_mask, mask_value)
else:
causal_mask = None

# Run encoder.
hidden_states, presents, all_hidden_states, all_self_attentions = chatglm2_encoder_forward(
self.encoder,
inputs_embeds, causal_mask,
rotary_pos_emb=rotary_pos_emb, kv_caches=past_key_values,
use_cache=use_cache, output_hidden_states=output_hidden_states
)
# ipex-llm changes end

if not return_dict:
return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions]
if v is not None)

return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=presents,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
)


# remove code which stores first token's kv cache by tensor format
# to fix chatglm2-32k and chatglm3-128k
def chatglm2_encoder_forward(
self, hidden_states, attention_mask, rotary_pos_emb, kv_caches=None,
use_cache: Optional[bool] = True,
output_hidden_states: Optional[bool] = False,
):
if not kv_caches:
kv_caches = [None for _ in range(self.num_layers)]
presents = () if use_cache else None
if self.gradient_checkpointing and self.training:
use_cache = False

all_self_attentions = None
all_hidden_states = () if output_hidden_states else None
for index in range(self.num_layers):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)

layer = self._get_layer(index)
if self.gradient_checkpointing and self.training:
layer_ret = torch.utils.checkpoint.checkpoint(
layer,
hidden_states,
attention_mask,
rotary_pos_emb,
kv_caches[index],
use_cache
)
else:
layer_ret = layer(
hidden_states,
attention_mask,
rotary_pos_emb,
kv_cache=kv_caches[index],
use_cache=use_cache
)
hidden_states, kv_cache = layer_ret
if use_cache:
presents = presents + (kv_cache,)

if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)

# Final layer norm.
if self.post_layer_norm:
hidden_states = self.final_layernorm(hidden_states)

return hidden_states, presents, all_hidden_states, all_self_attentions


def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
"""
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states
go from (batch, num_key_value_heads, seqlen, head_dim) to
(batch, num_attention_heads, seqlen, head_dim)
"""
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
if n_rep == 1:
return hidden_states
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads,
n_rep, slen, head_dim)
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)


@torch.jit.script
def apply_rotary_pos_emb(x: torch.Tensor, rope_cache: torch.Tensor) -> torch.Tensor:
# x: [sq, b, np, hn]
sq, b, np, hn = x.size(0), x.size(1), x.size(2), x.size(3)
rot_dim = rope_cache.shape[-2] * 2
x, x_pass = x[..., :rot_dim], x[..., rot_dim:]
# truncate to support variable sizes
rope_cache = rope_cache[:sq]
xshaped = x.reshape(sq, -1, np, rot_dim // 2, 2)
rope_cache = rope_cache.view(sq, -1, 1, xshaped.size(3), 2)
x_out2 = torch.stack(
[
xshaped[..., 0] * rope_cache[..., 0] - xshaped[..., 1] * rope_cache[..., 1],
xshaped[..., 1] * rope_cache[..., 0] + xshaped[..., 0] * rope_cache[..., 1],
],
-1,
)
x_out2 = x_out2.flatten(3)
return torch.cat((x_out2, x_pass), dim=-1)


def chatglm2_attention_forward(
self, hidden_states, attention_mask, rotary_pos_emb, kv_cache=None, use_cache=True
):
# hidden_states: [seq_len, bsz, head_dim]
q_len, bsz, _ = hidden_states.size()

# kv_cache: [seq_len, bsz, n_kv_head, head_dim] ->
# past_key_value: [bsz, n_kv_head, seq_len, head_dim]
past_key_value = None if kv_cache is None else (kv_cache[0].permute(1, 2, 0, 3),
kv_cache[1].permute(1, 2, 0, 3))

n_head = self.num_attention_heads_per_partition
n_kv_head = self.num_multi_query_groups_per_partition if self.multi_query_attention else n_head
head_dim = self.hidden_size_per_attention_head

qkv = self.query_key_value(hidden_states)
qkv = qkv.view(q_len, bsz, n_head + 2 * n_kv_head, head_dim)
# [seq_len, bsz, n_head, head_dim] -> [bsz, n_head, seq_len, head_dim]
qkv = qkv.permute(1, 2, 0, 3)

query_states, key_states, value_states = qkv.split([n_head,
n_kv_head,
n_kv_head], dim=1)

kv_seq_len = key_states.shape[2]
if past_key_value is not None:
kv_seq_len += past_key_value[0].shape[2]

if rotary_pos_emb is not None:
query_states = apply_rotary_pos_emb(query_states, rotary_pos_emb)
key_states = apply_rotary_pos_emb(key_states, rotary_pos_emb)

key_states, value_states = update_past_key_value(
past_key_value, key_states, value_states,
kv_seq_len, False, hidden_states.device
)
# past_key_value: [bsz, n_kv_head, seq_len, head_dim] -> [seq_len, bsz, n_kv_head, head_dim]
past_key_value = (key_states.permute(2, 0, 1, 3),
value_states.permute(2, 0, 1, 3)) if use_cache else None

# repeat k/v heads if n_kv_heads < n_heads
key_states = repeat_kv(key_states, n_head // n_kv_head)
value_states = repeat_kv(value_states, n_head // n_kv_head)

if query_states.size(2) == key_states.size(2):
# first token
from intel_npu_acceleration_library.functional import scaled_dot_product_attention
attn_output = scaled_dot_product_attention(
query_states,
key_states,
value_states,
attn_mask=attention_mask,
is_causal=q_len > 1 and bsz == 1,
)
attn_weights = None
else:
attn_weights = torch.matmul(query_states,
key_states.transpose(2, 3)) / math.sqrt(head_dim)
if attention_mask is not None:
attn_weights = attn_weights + attention_mask
attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1,
dtype=torch.float32).to(value_states.dtype)
attn_output = torch.matmul(attn_weights, value_states)

# context_layer's shape: [bsz, n_head, seq_len, head_dim] -> [seq_len, bsz, n_head * head_dim]
attn_output = attn_output.permute(2, 0, 1, 3).contiguous().view(q_len, bsz, n_head * head_dim)
output = self.dense(attn_output)

return output, past_key_value
10 changes: 10 additions & 0 deletions python/llm/src/ipex_llm/transformers/npu_models/convert.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,6 +15,7 @@


import torch
import importlib
from ipex_llm.transformers.npu_models.linear import QuantizedLinear


Expand Down Expand Up @@ -118,6 +119,15 @@ def optimize_llm(model: torch.nn.Module):
convert_forward(model, module.MiniCPMForCausalLM, minicpm_model_causal_lm_forward)
convert_forward(model, module.MiniCPMAttention, minicpm_attention_forward)
convert_forward(model, module.MiniCPMMLP, minicpm_mlp_forward)

elif model.config.model_type == "chatglm":
from ipex_llm.transformers.npu_models.chatglm import chatglm2_model_forward
from ipex_llm.transformers.npu_models.chatglm import chatglm2_attention_forward
modeling_module_name = model.__class__.__module__
module = importlib.import_module(modeling_module_name)
convert_forward(model, module.ChatGLMModel, chatglm2_model_forward)
convert_forward(model, module.SelfAttention, chatglm2_attention_forward)

elif model.config.model_type == "stablelm":
from ipex_llm.transformers.npu_models.stablelm import merge_qkv
from ipex_llm.transformers.npu_models.stablelm import merge_mlp
Expand Down

0 comments on commit 14ce058

Please sign in to comment.