Skip to content

Commit

Permalink
fix code style
Browse files Browse the repository at this point in the history
  • Loading branch information
plusbang committed Aug 28, 2024
1 parent 7ac3396 commit 10d6591
Showing 1 changed file with 87 additions and 0 deletions.
87 changes: 87 additions & 0 deletions python/llm/src/ipex_llm/transformers/npu_models/qwen2_mp.py
Original file line number Diff line number Diff line change
Expand Up @@ -819,6 +819,17 @@ def run_prefill(
print("finish creating all decode layers in prefill")
result_queue.put("loading finish")

if model.config.intermediate_size == 18944:
# for qwen2-7b
from transformers.models.qwen2.modeling_qwen2 import Qwen2Attention
from ipex_llm.transformers.npu_models.convert_mp import convert_forward
qwen2_attention_forward = generate_qwen2_attention_forward(
max_seq_len=max_output_len,
transpose_value=transpose_value_cache
)
convert_forward(model, Qwen2Attention, qwen2_attention_forward)
deocderlayers = model.model.layers

while True:

result = input_queue.get()
Expand Down Expand Up @@ -1090,3 +1101,79 @@ def qwen2_casullm_forward(
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)

from transformers.models.qwen2.modeling_qwen2 import apply_rotary_pos_emb, repeat_kv
import math


def generate_qwen2_attention_forward(max_seq_len, transpose_value):
def qwen2_attention_forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
bsz, q_len, _ = hidden_states.size()

query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads,
self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads,
self.head_dim).transpose(1, 2)

kv_seq_len = key_states.shape[-2]
if past_key_value is not None:
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)

cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
query_states, key_states = apply_rotary_pos_emb(query_states, key_states,
cos, sin, position_ids)

cache_kwargs = {"max_seq_len": max_seq_len, "transpose": transpose_value, }

if past_key_value is not None:
key_states, value_states = past_key_value.update(key_states, value_states,
self.layer_idx, cache_kwargs)

key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)

attn_weights = None
if query_states.size(2) == key_states.size(2):
# first token
from intel_npu_acceleration_library.functional import scaled_dot_product_attention
attn_output = scaled_dot_product_attention(
query_states,
key_states,
value_states,
attn_mask=attention_mask,
is_causal=q_len > 1 and bsz == 1,
)
else:
attn_weights = torch.matmul(query_states,
key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
if attention_mask is not None:
attn_weights = attn_weights + attention_mask
# upcast attention to fp32
attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1,
dtype=torch.float32).to(query_states.dtype)
attn_weights = torch.nn.functional.dropout(attn_weights, p=self.attention_dropout,
training=self.training)
attn_output = torch.matmul(attn_weights, value_states)

attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)

attn_output = self.o_proj(attn_output)

if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value
return qwen2_attention_forward

0 comments on commit 10d6591

Please sign in to comment.