Skip to content

Commit

Permalink
optimize phi3-v encoder npu performance and add multimodal example (#…
Browse files Browse the repository at this point in the history
…11553)

* phi3-v

* readme
  • Loading branch information
leonardozcm authored Jul 11, 2024
1 parent 70ab1a6 commit 105e124
Show file tree
Hide file tree
Showing 4 changed files with 370 additions and 0 deletions.
Original file line number Diff line number Diff line change
@@ -0,0 +1,75 @@
# Run Large Multimodal Model on Intel NPU
In this directory, you will find examples on how you could apply IPEX-LLM INT4 or INT8 optimizations on Large Multimodal Models on [Intel NPUs](../../../README.md). In this directory, you will find examples on how you could apply IPEX-LLM INT4 or INT8 optimizations on Large Multimodal Models on Intel NPUs. See the table blow for verified models.

## Verified Models

| Model | Model Link |
|------------|----------------------------------------------------------------|
| Phi-3-Vision | [microsoft/Phi-3-vision-128k-instruct](https://huggingface.co/microsoft/Phi-3-vision-128k-instruct) |

## 0. Requirements
To run these examples with IPEX-LLM on Intel NPUs, make sure to install the newest driver version of Intel NPU.
Go to https://www.intel.com/content/www/us/en/download/794734/intel-npu-driver-windows.html to download and unzip the driver.
Then go to **Device Manager**, find **Neural Processors** -> **Intel(R) AI Boost**.
Right click and select **Update Driver**. And then manually select the folder unzipped from the driver.

## Example: Predict Tokens using `generate()` API
In the example [generate.py](./generate.py), we show a basic use case for a phi-3-vision model to predict the next N tokens using `generate()` API, with IPEX-LLM INT4 optimizations on Intel NPUs.
### 1. Install
#### 1.1 Installation on Windows
We suggest using conda to manage environment:
```bash
conda create -n llm python=3.10 libuv
conda activate llm

# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/

# below command will install intel_npu_acceleration_library
pip install intel-npu-acceleration-library==1.3

pip install transformers==4.40
```

### 2. Runtime Configurations
For optimal performance, it is recommended to set several environment variables. Please check out the suggestions based on your device.
#### 2.1 Configurations for Windows

**Following envrionment variables are required**:

```cmd
set BIGDL_USE_NPU=1
```

### 3. Running examples

```
python ./generate.py
```

Arguments info:
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the Phi-3-vision model (e.g. `microsoft/Phi-3-vision-128k-instruct`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'microsoft/Phi-3-vision-128k-instruct'`, and more verified models please see the list in [Verified Models](#verified-models).
- `--image-url-or-path IMAGE_URL_OR_PATH`: argument defining the image to be infered. It is default to be `'http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg'`.
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'What is in the image?'`.
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.
- `--load_in_low_bit`: argument defining the `load_in_low_bit` format used. It is default to be `sym_int8`, `sym_int4` can also be used.

#### Sample Output
#### [microsoft/Phi-3-vision-128k-instruct](https://huggingface.co/microsoft/Phi-3-vision-128k-instruct)

```log
Inference time: xxxx s
-------------------- Prompt --------------------
Message: [{'role': 'user', 'content': '<|image_1|>\nWhat is in the image?'}]
Image link/path: http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg
-------------------- Output --------------------
What is in the image?
The image shows a young girl holding a white teddy bear. She is wearing a pink dress with a heart on it. The background includes a stone
```

The sample input image is (which is fetched from [COCO dataset](https://cocodataset.org/#explore?id=264959)):

<a href="http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg"><img width=400px src="http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg" ></a>

Original file line number Diff line number Diff line change
@@ -0,0 +1,93 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

import os
import time
import torch
import argparse
import requests

from PIL import Image
from ipex_llm.transformers.npu_model import AutoModelForCausalLM
from transformers import AutoProcessor

if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for phi-3 model')
parser.add_argument('--repo-id-or-model-path', type=str, default="microsoft/Phi-3-vision-128k-instruct",
help='The huggingface repo id for the phi-3-vision model to be downloaded'
', or the path to the huggingface checkpoint folder')
parser.add_argument('--image-url-or-path', type=str,
default="http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg",
help='The URL or path to the image to infer')
parser.add_argument('--prompt', type=str, default="What is in the image?",
help='Prompt to infer')
parser.add_argument('--n-predict', type=int, default=32,
help='Max tokens to predict')
parser.add_argument('--load_in_low_bit', type=str, default="sym_int4",
help='Load in low bit to use')


args = parser.parse_args()
model_path = args.repo_id_or_model_path
image_path = args.image_url_or_path

# Load model in SYM_INT4,
# which convert the relevant layers in the model into SYM_INT4 format
# You could also try `'sym_int8'` for INT8
# `_attn_implementation="eager"` is required for phi-3-vision
# `modules_to_not_convert=["vision_embed_tokens"]` and `model = model.half()` are for acceleration and are optional
model = AutoModelForCausalLM.from_pretrained(model_path,
trust_remote_code=True,
load_in_low_bit=args.load_in_low_bit,
_attn_implementation="eager",
modules_to_not_convert=["vision_embed_tokens"])

# Load processor
processor = AutoProcessor.from_pretrained(model_path, trust_remote_code=True)

# here the message formatting refers to https://huggingface.co/microsoft/Phi-3-vision-128k-instruct#sample-inference-code
messages = [
{"role": "user", "content": "<|image_1|>\n{prompt}".format(prompt=args.prompt)},
]
prompt = processor.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)

if os.path.exists(image_path):
image = Image.open(image_path)
else:
image = Image.open(requests.get(image_path, stream=True).raw)

# Generate predicted tokens
with torch.inference_mode():
# start inference
st = time.time()

inputs = processor(prompt, [image], return_tensors="pt")
output = model.generate(**inputs,
eos_token_id=processor.tokenizer.eos_token_id,
num_beams=1,
do_sample=False,
max_new_tokens=args.n_predict,
temperature=0.0)
end = time.time()
print(f'Inference time: {end-st} s')
output_str = processor.decode(output[0],
skip_special_tokens=True,
clean_up_tokenization_spaces=False)
print('-'*20, 'Prompt', '-'*20)
print(f'Message: {messages}')
print(f'Image link/path: {image_path}')
print('-'*20, 'Output', '-'*20)
print(output_str)
12 changes: 12 additions & 0 deletions python/llm/src/ipex_llm/transformers/npu_models/convert.py
Original file line number Diff line number Diff line change
Expand Up @@ -177,3 +177,15 @@ def optimize_llm(model: torch.nn.Module):
model.apply(merge_mlp)

convert_forward(model, module.MLP, baichuan_mlp_forward)

elif model.config.model_type == "phi3_v":
modeling_module_name = model.__class__.__module__
module = importlib.import_module(modeling_module_name)
from ipex_llm.transformers.npu_models.phi3_v import merge_qkv
from ipex_llm.transformers.npu_models.phi3_v import phi3v_encoder_attention_forward
from ipex_llm.transformers.npu_models.phi3_v import phi3v_model_forward
model.apply(merge_qkv)

from transformers.models.clip.modeling_clip import CLIPAttention
convert_forward(model, CLIPAttention, phi3v_encoder_attention_forward)
convert_forward(model, module.Phi3VModel, phi3v_model_forward)
190 changes: 190 additions & 0 deletions python/llm/src/ipex_llm/transformers/npu_models/phi3_v.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,190 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Some parts of this file is adapted from
# https://github.com/huggingface/transformers/blob/v4.40.0/src/transformers/models/llama/modeling_llama.py
# which is licensed under Apache License 2.0:
#
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import torch
import importlib
from torch import nn
from typing import Optional, Tuple, List
from transformers.models.clip.modeling_clip import CLIPAttention
from ipex_llm.utils.common.log4Error import invalidInputError


def merge_qkv(module: torch.nn.Module):
if isinstance(module, CLIPAttention):
new_weight = torch.cat([
module.q_proj.weight.data,
module.k_proj.weight.data,
module.v_proj.weight.data,
], dim=0)

if module.q_proj.bias is not None:
qkv_proj = torch.nn.Linear(0, 0, bias=True)
new_bias = torch.cat([
module.q_proj.bias.data,
module.k_proj.bias.data,
module.v_proj.bias.data,
], dim=0)
qkv_proj.bias = torch.nn.Parameter(new_bias, requires_grad=False)
else:
qkv_proj = torch.nn.Linear(0, 0, bias=False)
qkv_proj.weight = torch.nn.Parameter(new_weight, requires_grad=False)
qkv_proj.in_features = new_weight.size(1)
qkv_proj.out_features = new_weight.size(0)
module.qkv_proj = qkv_proj

del module.q_proj, module.k_proj, module.v_proj


def phi3v_model_forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
pixel_values: Optional[torch.FloatTensor] = None,
image_sizes: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
):
# ipex-llm changes start
from ipex_llm.transformers.kv import DynamicNormalCache
# IPEX-LLM OPT: kv cache and quantize kv cache
use_cache = use_cache if use_cache is not None else self.config.use_cache
if use_cache:
if not isinstance(past_key_values, DynamicNormalCache):
past_key_values = DynamicNormalCache.from_legacy_cache(past_key_values)
modeling_module_name = self.__class__.__module__
module = importlib.import_module(modeling_module_name)
return module.Phi3VModel.forward(
self=self,
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
pixel_values=pixel_values,
image_sizes=image_sizes,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)


def phi3v_encoder_attention_forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
causal_attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
bsz, tgt_len, embed_dim = hidden_states.size()

qkv = self.qkv_proj(hidden_states)
qkv = qkv.view(bsz, tgt_len, self.num_heads * 3, self.head_dim)
qkv = qkv.transpose(1, 2)
query_states, key_states, value_states = qkv.split([self.num_heads,
self.num_heads,
self.num_heads], dim=1)

proj_shape = (bsz * self.num_heads, -1, self.head_dim)
query_states = query_states.reshape(*proj_shape)
key_states = key_states.reshape(*proj_shape)
value_states = value_states.reshape(*proj_shape)

src_len = key_states.size(1)
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))

if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
invalidInputError(
False,
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)},"
f" but is {attn_weights.size()}"
)

# apply the causal_attention_mask first
if causal_attention_mask is not None:
if causal_attention_mask.size() != (bsz, 1, tgt_len, src_len):
invalidInputError(
False,
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is"
f" {causal_attention_mask.size()}"
)
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) \
+ causal_attention_mask
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)

if attention_mask is not None:
if attention_mask.size() != (bsz, 1, tgt_len, src_len):
invalidInputError(
False,
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)},"
f" but is {attention_mask.size()}"
)
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)

attn_weights = nn.functional.softmax(attn_weights, dim=-1)

if output_attentions:
# this operation is a bit akward, but it's required to
# make sure that attn_weights keeps its gradient.
# In order to do so, attn_weights have to reshaped
# twice and have to be reused in the following
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
else:
attn_weights_reshaped = None

attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)

attn_output = torch.bmm(attn_probs, value_states)

if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
invalidInputError(
False,
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)},"
f" but is {attn_output.size()}"
)

attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
attn_output = attn_output.transpose(1, 2)
attn_output = attn_output.reshape(bsz, tgt_len, embed_dim)

attn_output = self.out_proj(attn_output)

return attn_output, attn_weights_reshaped

0 comments on commit 105e124

Please sign in to comment.