Skip to content

Commit

Permalink
Implement unmarshal for compressed format for crypto/elliptic
Browse files Browse the repository at this point in the history
First byte can be 0x2 or 0x3 (compressed form).
To unmarshal used formula y² = x³ - 3x + b.
Reuse code from `IsOnCurve`.

Closes golang#34105 issue
  • Loading branch information
im-kulikov committed Oct 24, 2019
1 parent 9fc41cd commit a158b95
Show file tree
Hide file tree
Showing 2 changed files with 66 additions and 20 deletions.
63 changes: 43 additions & 20 deletions src/crypto/elliptic/elliptic.go
Original file line number Diff line number Diff line change
Expand Up @@ -52,11 +52,8 @@ func (curve *CurveParams) Params() *CurveParams {
return curve
}

func (curve *CurveParams) IsOnCurve(x, y *big.Int) bool {
// y² = x³ - 3x + b
y2 := new(big.Int).Mul(y, y)
y2.Mod(y2, curve.P)

// polynomial returns x³ - 3x + b
func (curve *CurveParams) polynomial(x *big.Int) *big.Int {
x3 := new(big.Int).Mul(x, x)
x3.Mul(x3, x)

Expand All @@ -67,7 +64,15 @@ func (curve *CurveParams) IsOnCurve(x, y *big.Int) bool {
x3.Add(x3, curve.B)
x3.Mod(x3, curve.P)

return x3.Cmp(y2) == 0
return x3
}

func (curve *CurveParams) IsOnCurve(x, y *big.Int) bool {
// y² = x³ - 3x + b
y2 := new(big.Int).Mul(y, y)
y2.Mod(y2, curve.P)

return curve.polynomial(x).Cmp(y2) == 0
}

// zForAffine returns a Jacobian Z value for the affine point (x, y). If x and
Expand Down Expand Up @@ -321,21 +326,39 @@ func Marshal(curve Curve, x, y *big.Int) []byte {
// On error, x = nil.
func Unmarshal(curve Curve, data []byte) (x, y *big.Int) {
byteLen := (curve.Params().BitSize + 7) >> 3
if len(data) != 1+2*byteLen {
return
}
if data[0] != 4 { // uncompressed form
return
}
p := curve.Params().P
x = new(big.Int).SetBytes(data[1 : 1+byteLen])
y = new(big.Int).SetBytes(data[1+byteLen:])
if x.Cmp(p) >= 0 || y.Cmp(p) >= 0 {
return nil, nil
}
if !curve.IsOnCurve(x, y) {
return nil, nil

switch data[0] {
case 2, 3: // compressed form
if len(data) != 1+byteLen {
return
}

x = new(big.Int).SetBytes(data[1:])
x3 := curve.Params().polynomial(x)
y = new(big.Int).ModSqrt(x3, curve.Params().P)

// Jacobi(x, p) == -1
if y == nil {
return nil, nil
} else if y.Bit(0) != uint(data[0]&0x1) {
y.Neg(y)
y.Mod(y, curve.Params().P)
}
case 4: // uncompressed form
if len(data) != 1+2*byteLen {
return
}
p := curve.Params().P
x = new(big.Int).SetBytes(data[1 : 1+byteLen])
y = new(big.Int).SetBytes(data[1+byteLen:])
if x.Cmp(p) >= 0 || y.Cmp(p) >= 0 {
return nil, nil
}
if !curve.IsOnCurve(x, y) {
return nil, nil
}
}

return
}

Expand Down
23 changes: 23 additions & 0 deletions src/crypto/elliptic/elliptic_test.go
Original file line number Diff line number Diff line change
Expand Up @@ -628,3 +628,26 @@ func TestUnmarshalToLargeCoordinates(t *testing.T) {
t.Errorf("Unmarshal accepts invalid Y coordinate")
}
}

// See https://golang.org/issues/34105
func TestUnmarshalCompressed(t *testing.T) {
p256 := P256()
_, x, y, err := GenerateKey(p256, rand.Reader)
if err != nil {
t.Error(err)
return
}
byteLen := (p256.Params().BitSize + 7) >> 3
compressed := make([]byte, 1+byteLen)
compressed[0] = 3
if y.Bit(0) == 0 {
compressed[0] = 2
}
copy(compressed[1:], x.Bytes())
newX, newY := Unmarshal(p256, compressed)
if !p256.IsOnCurve(newX, newY) {
t.Error("P256 failed to validate a correct point")
} else if x.Cmp(newX) != 0 || y.Cmp(newY) != 0 {
t.Error("P256 failed to correctly unmarshal compressed point")
}
}

0 comments on commit a158b95

Please sign in to comment.