Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Kelly4 l #12

Open
wants to merge 3 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion lab0-LearningiOLab/lab0.html
Original file line number Diff line number Diff line change
Expand Up @@ -103,7 +103,7 @@ <h3>Materials needed:</h3>
<li>Record about 1 second of data and stop.</li>
<li>Double the distance to 2 cm, 4 cm and 8 cm, and record 1 second of data each.</li>
<li>For each measurement made above, highlight the 1-second interval over which you took data, and record the average and the distance of the measurement in a table.</li>
</ol><div class="QuestionHeading"><p>Question 7</p><div class="Question parsed"><p>For each doubling, calculate the ratio of the magnetic field <span class="math math-inline"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>B</mi><mo stretchy="false">(</mo><mn>2</mn><mi>r</mi><mo stretchy="false">)</mo><mi mathvariant="normal">/</mi><mi>B</mi><mi>F</mi><mo stretchy="false">(</mo><mi>r</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">B(2r)/BF(r)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault" style="margin-right:0.05017em;">B</span><span class="mopen">(</span><span class="mord">2</span><span class="mord mathdefault" style="margin-right:0.02778em;">r</span><span class="mclose">)</span><span class="mord">/</span><span class="mord mathdefault" style="margin-right:0.05017em;">B</span><span class="mord mathdefault" style="margin-right:0.13889em;">F</span><span class="mopen">(</span><span class="mord mathdefault" style="margin-right:0.02778em;">r</span><span class="mclose">)</span></span></span></span></span>. For example, calculate <span class="math math-inline"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>B</mi><mo stretchy="false">(</mo><mn>2</mn><mtext> </mtext><mi>c</mi><mi>m</mi><mo stretchy="false">)</mo><mi mathvariant="normal">/</mi><mi>B</mi><mo stretchy="false">(</mo><mn>1</mn><mtext> </mtext><mi>c</mi><mi>m</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">B(2\:cm)/ B(1\:cm)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault" style="margin-right:0.05017em;">B</span><span class="mopen">(</span><span class="mord">2</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord mathdefault">c</span><span class="mord mathdefault">m</span><span class="mclose">)</span><span class="mord">/</span><span class="mord mathdefault" style="margin-right:0.05017em;">B</span><span class="mopen">(</span><span class="mord">1</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord mathdefault">c</span><span class="mord mathdefault">m</span><span class="mclose">)</span></span></span></span></span></p><p>(a) Do the ratios match your expectations from Question 6c? </p><p>(b) Do some ratios match better than others?</p><p>(c) Propose an explanation for part (b). Consider things such as the nature of the magnetic field (Should the measurement be more accurate closer to or farther from the device?) as well as experimental corrections like the exact location of the magnetometer (Is it exactly at the 'M' symbol? What effect might an offset have on your data? Can you estimate the offset? )</p></div></div></div></div>
</ol><div class="QuestionHeading"><p>Question 7</p><div class="Question parsed"><p>For each doubling, calculate the ratio of the magnetic field <span class="math math-inline"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>B</mi><mo stretchy="false">(</mo><mn>2</mn><mi>r</mi><mo stretchy="false">)</mo><mi mathvariant="normal">/</mi><mi>B</mi><mo stretchy="false">(</mo><mi>r</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">B(2r)/B(r)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault" style="margin-right:0.05017em;">B</span><span class="mopen">(</span><span class="mord">2</span><span class="mord mathdefault" style="margin-right:0.02778em;">r</span><span class="mclose">)</span><span class="mord">/</span><span class="mord mathdefault" style="margin-right:0.05017em;">B</span><span class="mopen">(</span><span class="mord mathdefault" style="margin-right:0.02778em;">r</span><span class="mclose">)</span></span></span></span></span>. For example, calculate <span class="math math-inline"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>B</mi><mo stretchy="false">(</mo><mn>2</mn><mtext> </mtext><mi>c</mi><mi>m</mi><mo stretchy="false">)</mo><mi mathvariant="normal">/</mi><mi>B</mi><mo stretchy="false">(</mo><mn>1</mn><mtext> </mtext><mi>c</mi><mi>m</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">B(2\:cm)/ B(1\:cm)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault" style="margin-right:0.05017em;">B</span><span class="mopen">(</span><span class="mord">2</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord mathdefault">c</span><span class="mord mathdefault">m</span><span class="mclose">)</span><span class="mord">/</span><span class="mord mathdefault" style="margin-right:0.05017em;">B</span><span class="mopen">(</span><span class="mord">1</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord mathdefault">c</span><span class="mord mathdefault">m</span><span class="mclose">)</span></span></span></span></span></p><p>(a) Do the ratios match your expectations from Question 6c? </p><p>(b) Do some ratios match better than others?</p><p>(c) Propose an explanation for part (b). Consider things such as the nature of the magnetic field (Should the measurement be more accurate closer to or farther from the device?) as well as experimental corrections like the exact location of the magnetometer (Is it exactly at the 'M' symbol? What effect might an offset have on your data? Can you estimate the offset? )</p></div></div></div></div>
<h2>Part III: Write-up</h2>
<ul>
<li>For Part I, give a short summary of the iOLab device. </li>
Expand Down
2 changes: 1 addition & 1 deletion lab0-LearningiOLab/lab0.md
Original file line number Diff line number Diff line change
Expand Up @@ -209,7 +209,7 @@ As your final exercise in getting familiar with the iOLab, you will attempt to v


:::Question
For each doubling, calculate the ratio of the magnetic field $B(2r)/BF(r)$. For example, calculate $B(2\:cm)/
For each doubling, calculate the ratio of the magnetic field $B(2r)/B(r)$. For example, calculate $B(2\:cm)/
B(1\:cm)$

(a) Do the ratios match your expectations from Question 6c?
Expand Down
Binary file removed lab1-magnetic force/.DS_Store
Binary file not shown.
Binary file removed lab1-magnetic force/imgs/.DS_Store
Binary file not shown.
15 changes: 9 additions & 6 deletions lab1-magnetic force/lab1.md
Original file line number Diff line number Diff line change
Expand Up @@ -29,10 +29,7 @@ $$
\vec F = q (\vec v \times \vec B)
$$

:::Figure:Figure
![](imgs/crossproduct.png)
AVOCADO: Right hand rule/cross product simulation?
:::


This equation gives us two separate and important pieces of information, namely the *direction* and *magnitude* of the resulting force. The direction can be determined by using the so called &ldquo;right-hand rule:&rdquo; if you extend your index and middle finger in the directions of these vectors, in order, your thumb will point in the resultant direction.

Expand All @@ -46,7 +43,9 @@ Vector equations, if they are new to you, take some getting used to. In plain En


:::Figure:Figure
AVOCADO: Free electron in magnetic field simulation

<iframe src="https://kapawlak.github.io/PhDemoJS/Apps/LorentzForce/LorentzForce.html" width= "100%" height="650" style="border:none;">

:::

# Part II: Experiments
Expand Down Expand Up @@ -101,7 +100,7 @@ In this experiment, we will tape a strip of aluminum foil, which behaves as a &l
7. Note the orientation of the magnet and the direction of current and record these and the direction of motion of the foil. (See the next step.)
8. Repeat this experiment for all four combinations of magnet orientation and battery orientation. Make a table similar to the following to record your results for each magnet and battery orientation, the prediction for the force direction given by the right hand rule and the observed direction of foil movement:
:::Figure:Table
| Magnet Orienation | Battery Oreintation | RHR |Foil Direction |
| Magnet Orientation | Battery Orientation | RHR |Foil Direction |
| -------- | -------- | -------- |-------- |
| (N/S) toward foil | (+/-) up | (up/down) | (up/down) |
|$\:$ | | | |
Expand Down Expand Up @@ -135,8 +134,10 @@ In this setup, we will be creating a simple homopolar motor. Homopolar motors, f




In this exercise we will construct this direct current (DC) motor using a battery as our voltage source and our neodymium magnet as the conductor and perpendicular field source. The magnet will be connected with the battery by means of a screw, whose sharp point has minimal friction and allows for free rotation. When wire leads are used to close the circuit, the current running from the magnet’s outer surface to the screw at its center, in conjunction with the magnetic field, will result in a force on the moving *electrons* inside the magnet, causing it to rotate rapidly!


:::Question
![](imgs/Currentdisk.png)

Expand All @@ -158,13 +159,15 @@ With the knowledge of the magnet&rsquo;s orientation from the previous lab, we w
5. Once everything is connected, gently touch the other end of the wire lead to the side of the magnet (ie, perpendicular to the magnet’s surface)
6. If you do this correctly, the screw should rotate.


::: Figure:Figure
![motor](imgs/1.png)
:::
######

You have now completed the motor setup for one of four possible orientations of the magnet and battery. Make a table like the one below and record your results for all four possible combinations of your battery and magnet orientations, prediction based on the right hand rule, and the observed direction of rotation:


:::Figure:Table
| Magnet Orienation | Battery Oreintation | RHR|Rotation Direction |
| -------- | -------- | -------- |-------- |
Expand Down
Binary file removed lab2-magnetic field/.DS_Store
Binary file not shown.
Binary file removed lab2-magnetic field/imgs/.DS_Store
Binary file not shown.
Binary file removed lab3-Faraday_s law/.DS_Store
Binary file not shown.
Binary file removed lab3-Faraday_s law/imgs/.DS_Store
Binary file not shown.
Binary file removed lab4-RC/.DS_Store
Binary file not shown.
Binary file removed lab4-RC/imgs/.DS_Store
Binary file not shown.
Binary file removed lab5-RLC Circuit/.DS_Store
Binary file not shown.
Binary file removed lab5-RLC Circuit/imgs/.DS_Store
Binary file not shown.
Binary file removed lab6-light/.DS_Store
Binary file not shown.
Binary file removed lab6-light/imgs/.DS_Store
Binary file not shown.