Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat: Split sample_bipartite() into two functions for the G(n, m) and G(n, p) case #1627

Open
wants to merge 5 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 4 additions & 0 deletions NAMESPACE
Original file line number Diff line number Diff line change
Expand Up @@ -186,6 +186,8 @@ export(bipartite.mapping)
export(bipartite.projection)
export(bipartite.projection.size)
export(bipartite.random.game)
export(bipartite_gnm)
export(bipartite_gnp)
export(bipartite_graph)
export(bipartite_mapping)
export(bipartite_projection)
Expand Down Expand Up @@ -746,6 +748,8 @@ export(running_mean)
export(sample_)
export(sample_asym_pref)
export(sample_bipartite)
export(sample_bipartite_gnm)
export(sample_bipartite_gnp)
export(sample_chung_lu)
export(sample_cit_cit_types)
export(sample_cit_types)
Expand Down
34 changes: 34 additions & 0 deletions R/aaa-auto.R
Original file line number Diff line number Diff line change
Expand Up @@ -2080,6 +2080,40 @@ is_bipartite_impl <- function(graph) {
res
}

bipartite_game_gnp_impl <- function(n1, n2, p, directed=FALSE, mode=c("all", "out", "in", "total")) {
# Argument checks
n1 <- as.numeric(n1)
n2 <- as.numeric(n2)
p <- as.numeric(p)
directed <- as.logical(directed)
mode <- switch(igraph.match.arg(mode), "out"=1L, "in"=2L, "all"=3L, "total"=3L)

on.exit( .Call(R_igraph_finalizer) )
# Function call
res <- .Call(R_igraph_bipartite_game_gnp, n1, n2, p, directed, mode)
if (igraph_opt("add.vertex.names") && is_named(graph)) {
names(res$types) <- vertex_attr(graph, "name", V(graph))
}
res
}

bipartite_game_gnm_impl <- function(n1, n2, m, directed=FALSE, mode=c("all", "out", "in", "total")) {
# Argument checks
n1 <- as.numeric(n1)
n2 <- as.numeric(n2)
m <- as.numeric(m)
directed <- as.logical(directed)
mode <- switch(igraph.match.arg(mode), "out"=1L, "in"=2L, "all"=3L, "total"=3L)

on.exit( .Call(R_igraph_finalizer) )
# Function call
res <- .Call(R_igraph_bipartite_game_gnm, n1, n2, m, directed, mode)
if (igraph_opt("add.vertex.names") && is_named(graph)) {
names(res$types) <- vertex_attr(graph, "name", V(graph))
}
res
}

get_laplacian_impl <- function(graph, mode=c("out", "in", "all", "total"), normalization=c("unnormalized", "symmetric", "left", "right"), weights=NULL) {
# Argument checks
ensure_igraph(graph)
Expand Down
185 changes: 136 additions & 49 deletions R/games.R
Original file line number Diff line number Diff line change
Expand Up @@ -265,7 +265,10 @@ callaway.traits.game <- function(nodes, types, edge.per.step = 1, type.dist = re
#' @keywords internal
#' @export
bipartite.random.game <- function(n1, n2, type = c("gnp", "gnm"), p, m, directed = FALSE, mode = c("out", "in", "all")) { # nocov start
lifecycle::deprecate_soft("2.0.0", "bipartite.random.game()", "sample_bipartite()")
lifecycle::deprecate_warn(
"2.0.0", "bipartite.random.game()",
details = "Use sample_bipartite_gnp() or sample_bipartite_gnm()"
)
sample_bipartite(n1 = n1, n2 = n2, type = type, p = p, m = m, directed = directed, mode = mode)
} # nocov end

Expand Down Expand Up @@ -1695,13 +1698,8 @@ cit_cit_types <- function(...) constructor_spec(sample_cit_cit_types, ...)

#' Bipartite random graphs
#'
#' Generate bipartite graphs using the Erdős-Rényi model
#'
#' Similarly to unipartite (one-mode) networks, we can define the \eqn{G(n,p)}, and
#' \eqn{G(n,m)} graph classes for bipartite graphs, via their generating process.
#' In \eqn{G(n,p)} every possible edge between top and bottom vertices is realized
#' with probability \eqn{p}, independently of the rest of the edges. In \eqn{G(n,m)}, we
#' uniformly choose \eqn{m} edges to realize.
#' `r lifecycle::badge("deprecated")` Generate bipartite graphs using the Erdős-Rényi model.
#' Use [`sample_bipartite_gnm()`] and [`sample_bipartite_gnp()`] instead.
#'
#' @param n1 Integer scalar, the number of bottom vertices.
#' @param n2 Integer scalar, the number of top vertices.
Expand All @@ -1725,72 +1723,161 @@ cit_cit_types <- function(...) constructor_spec(sample_cit_cit_types, ...)
#' @family games
#' @export
#' @keywords graphs
sample_bipartite <- function(n1, n2, type = c("gnp", "gnm"), p, m,
directed = FALSE, mode = c("out", "in", "all")) {

type <- igraph.match.arg(type)

if (type == "gnp") {
lifecycle::deprecate_soft(
"2.1.3",
"sample_bipartite()",
"sample_bipartite_gnp()"
)
sample_bipartite_gnp(n1, n2, p, directed = directed, mode = mode)
} else if (type == "gnm") {
lifecycle::deprecate_soft(
"2.1.3",
"sample_bipartite()",
"sample_bipartite_gnm()"
)
sample_bipartite_gnm(n1, n2, m, directed = directed, mode = mode)
}
}

#' @rdname sample_bipartite
#' @param ... Passed to `sample_bipartite()`.
#' @export
bipartite <- function(...) {
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Where is type defined here?

if (type == "gnp") {
lifecycle::deprecate_soft(
"2.1.3",
"bipartite()",
"bipartite_gnp()"
)
bipartite_gnp(...)
} else if (type == "gnm") {
lifecycle::deprecate_soft(
"2.1.3",
"bipartite()",
"bipartite_gnm()"
)
bipartite_gnm(...)
}

}

#' @rdname sample_bipartite_gnm
#' @param ... Passed to `sample_bipartite_gnm()`.
#' @export
bipartite_gnm <- function(...) constructor_spec(sample_bipartite_gnm, ...)

#' @rdname sample_bipartite_gnm
#' @param ... Passed to `sample_bipartite_gnp()`.
#' @export
bipartite_gnp <- function(...) constructor_spec(sample_bipartite_gnp, ...)

#' Bipartite random graphs
#'
#' Generate bipartite graphs using the Erdős-Rényi model
#'
#' Similarly to unipartite (one-mode) networks, we can define the \eqn{G(n,p)}, and
#' \eqn{G(n,m)} graph classes for bipartite graphs, via their generating process.
#' In \eqn{G(n,p)} every possible edge between top and bottom vertices is realized
#' with probability \eqn{p}, independently of the rest of the edges. In \eqn{G(n,m)}, we
#' uniformly choose \eqn{m} edges to realize.
#'
#'
#' @param n1 Integer scalar, the number of bottom vertices.
#' @param n2 Integer scalar, the number of top vertices.
#' @param p Real scalar, connection probability for \eqn{G(n,p)} graphs.
#' @param m Integer scalar, the number of edges for \eqn{G(n,m)} graphs.
#' @param directed Logical scalar, whether to create a directed graph. See also
#' the `mode` argument.
#' @param mode Character scalar, specifies how to direct the edges in directed
#' graphs. If it is \sQuote{out}, then directed edges point from bottom
#' vertices to top vertices. If it is \sQuote{in}, edges point from top
#' vertices to bottom vertices. \sQuote{out} and \sQuote{in} do not generate
#' mutual edges. If this argument is \sQuote{all}, then each edge direction is
#' considered independently and mutual edges might be generated. This argument
#' is ignored for undirected graphs.
#' @inheritParams rlang::args_dots_empty
#' @examples
#'
#' ## empty graph
#' sample_bipartite(10, 5, p = 0)
#' sample_bipartite_gnp(10, 5, p = 0)
#'
#' ## full graph
#' sample_bipartite(10, 5, p = 1)
#' sample_bipartite_gnp(10, 5, p = 1)
#'
#' ## random bipartite graph
#' sample_bipartite(10, 5, p = .1)
#' sample_bipartite_gnp(10, 5, p = .1)
#'
#' ## directed bipartite graph, G(n,m)
#' sample_bipartite(10, 5, type = "Gnm", m = 20, directed = TRUE, mode = "all")
#' sample_bipartite_gnm(10, 5, m = 20, directed = TRUE, mode = "all")
#'
sample_bipartite <- function(n1, n2, type = c("gnp", "gnm"), p, m,
directed = FALSE, mode = c("out", "in", "all")) {
#' @family games
#' @export
sample_bipartite_gnm <- function(n1, n2, m,
...,
directed = FALSE,
mode = c("out", "in", "all")) {
check_dots_empty()

n1 <- as.numeric(n1)
n2 <- as.numeric(n2)
type <- igraph.match.arg(type)
if (!missing(p)) {
p <- as.numeric(p)
}
if (!missing(m)) {
m <- as.numeric(m)
}

m <- as.numeric(m)

directed <- as.logical(directed)

mode <- switch(igraph.match.arg(mode),
"out" = 1,
"in" = 2,
"all" = 3
)

if (type == "gnp" && missing(p)) {
stop("Connection probability `p' is not given for Gnp graph")
}
if (type == "gnp" && !missing(m)) {
cli::cli_warn("Number of edges {.arg m} is ignored for Gnp graph.")
}
if (type == "gnm" && missing(m)) {
stop("Number of edges `m' is not given for Gnm graph")
}
if (type == "gnm" && !missing(p)) {
cli::cli_warn("Connection probability {.arg p} is ignored for Gnp graph.")
}

on.exit(.Call(R_igraph_finalizer))
if (type == "gnp") {
res <- .Call(R_igraph_bipartite_game_gnp, n1, n2, p, directed, mode)
res <- set_vertex_attr(res$graph, "type", value = res$types)
res$name <- "Bipartite Gnp random graph"
res$p <- p
} else if (type == "gnm") {
res <- .Call(R_igraph_bipartite_game_gnm, n1, n2, m, directed, mode)
res <- set_vertex_attr(res$graph, "type", value = res$types)
res$name <- "Bipartite Gnm random graph"
res$m <- m
}

res <- .Call(R_igraph_bipartite_game_gnm, n1, n2, m, directed, mode)
res <- set_vertex_attr(res$graph, "type", value = res$types)
res$name <- "Bipartite Gnm random graph"
res$m <- m

res
}

#' @rdname sample_bipartite
#' @param ... Passed to `sample_bipartite()`.
}
#' @rdname sample_bipartite_gnm
#' @export
bipartite <- function(...) constructor_spec(sample_bipartite, ...)
sample_bipartite_gnp <- function(n1, n2, p,
...,
directed = FALSE,
mode = c("out", "in", "all")) {
check_dots_empty()

n1 <- as.numeric(n1)
n2 <- as.numeric(n2)

p <- as.numeric(p)

directed <- as.logical(directed)

mode <- switch(igraph.match.arg(mode),
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This can now use the generated code.

"out" = 1,
"in" = 2,
"all" = 3
)

on.exit(.Call(R_igraph_finalizer))

res <- .Call(R_igraph_bipartite_game_gnp, n1, n2, p, directed, mode)
res <- set_vertex_attr(res$graph, "type", value = res$types)
res$name <- "Bipartite Gnp random graph"
res$p <- p

res

}

#' Sample stochastic block model
#'
Expand Down
1 change: 1 addition & 0 deletions man/erdos.renyi.game.Rd

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

1 change: 1 addition & 0 deletions man/sample_.Rd

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

26 changes: 3 additions & 23 deletions man/sample_bipartite.Rd

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

Loading
Loading