Skip to content

igip-liu/SLC-Net

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

31 Commits
 
 
 
 
 
 
 
 

Repository files navigation

SLC-Net

This repository is for our paper "Semi-supervised medical image segmentation using cross-style consistency with shape-aware and local context constraints"

Requirements

Some important required packages include:

  • Pytorch version >=0.4.1.

  • TensorBoardX

  • Python == 3.7

  • Efficientnet-Pytorch

  • Some basic python packages such as Numpy, Scikit-image, SimpleITK, Scipy,Batchgenerators ......

Usage

1、Clone the repo;

git clone https://github.com/igip-liu/SLC-Net.git

2、Data Preparation;

The division method of training/validation/test set can be seen:

ACDC dataset

Prostate dataset

NIH Pancrea dataset

The data that can be used to train our code can be seen:

ACDC dataset

Prostate dataset

NIH Pancrea dataset

The division of labeled/unlabeled datasets can be found in this code

You can regenerate the training data:

cd SLC-Net/code/dataloaders

python acdc_data_processing.py

3、Train the model;

cd SLC-Net/code

CUDA_VISIBLE_DEVICES=3 python train_CLB.py --root_path ../data/ACDC --exp ACDC/SLC-Net --num_classes 4 --labeled_num 7 --use_block_dice_loss --block_num 4

4、Test the model;

cd SLC-Net/code

CUDA_VISIBLE_DEVICES=0 python test_2D_fully.py --root_path ../data/ACDC --exp ACDC/SLC-Net --num_classes 4 --labeled_num 7

Our code is based on the UAMT, SSL4MIS and Dual-Normalization. Thanks for these authors for their valuable works.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages