-
Notifications
You must be signed in to change notification settings - Fork 8
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
30fc80d
commit 7b7525d
Showing
11 changed files
with
302 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -99,3 +99,6 @@ ENV/ | |
|
||
# mypy | ||
.mypy_cache/ | ||
|
||
data/ | ||
.DS_Store |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,2 +1,4 @@ | ||
# tying-wv-and-wc | ||
Implementation for "Tying Word Vectors and Word Classifiers: A Loss Framework for Language Modeling" | ||
|
||
Implementation for "[Tying Word Vectors and Word Classifiers: A Loss Framework for Language Modeling](https://arxiv.org/abs/1611.01462)" | ||
|
Empty file.
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,29 @@ | ||
import chazutsu | ||
import numpy as np | ||
|
||
|
||
class DataProcessor(): | ||
|
||
def __init__(self): | ||
pass | ||
|
||
def get_ptb(self, data_root, vocab_size=10000, force=False): | ||
r = chazutsu.datasets.PTB().download(directory=data_root) | ||
r_idx = r.to_indexed().make_vocab(vocab_size=vocab_size, force=force) | ||
return r_idx | ||
|
||
def format(self, word_seq, vocab_size, sentence_size=35, skip=3): | ||
sentences = [] | ||
next_words = [] | ||
index = 0 | ||
for i in range(0, len(word_seq) - sentence_size, skip): | ||
sentences.append(word_seq[i:i + sentence_size]) | ||
nw = word_seq[i + sentence_size] | ||
next_words.append(nw) | ||
|
||
sentences = np.array(sentences) | ||
one_hots = np.zeros((len(next_words), vocab_size)) | ||
for i, nw in enumerate(next_words): | ||
one_hots[i][nw] = 1 | ||
|
||
return sentences, one_hots |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,68 @@ | ||
import copy | ||
from keras import backend as K | ||
from keras.optimizers import Optimizer | ||
import numpy as np | ||
import tensorflow as tf | ||
from model.settings import SizeSetting, DatasetSetting | ||
|
||
|
||
class LangModelSGD(Optimizer): | ||
|
||
def __init__(self, size_kind="small", dataset_kind="ptb"): | ||
size_setting = SizeSetting.get(size_kind) | ||
dset_setting = DatasetSetting.get(dataset_kind) | ||
super(LangModelSGD, self).__init__() | ||
|
||
self.iterations = K.variable(0.) | ||
self.epoch_interval = K.variable(size_setting["epoch_interval"]) | ||
self.lr = K.variable(1.0) | ||
self.decay = K.variable(size_setting["decay"]) | ||
self._clipnorm = size_setting["norm_clipping"] | ||
|
||
def get_updates(self, params, constraints, loss): | ||
grads = self.get_gradients(loss, params) | ||
norm = K.sqrt(sum([K.sum(K.square(g)) for g in grads])) | ||
grads = [clip_norm(g, self._clipnorm, norm) for g in grads] | ||
if self.iterations % self.epoch_interval == 0: | ||
self.lr = self.lr * self.decay | ||
|
||
self.updates = [(self.iterations, self.iterations + 1.)] | ||
for p, g in zip(params, grads): | ||
self.updates.append((p, p - self.lr * g)) | ||
return self.updates | ||
|
||
def get_config(self): | ||
config = {"lr": float(K.get_value(self.lr)), | ||
"decay": float(K.get_value(self.decay)), | ||
"epoch_interval": float(K.get_value(self.epoch_interval)) | ||
} | ||
base_config = super(LangModelSGD, self).get_config() | ||
return dict(list(base_config.items()) + list(config.items())) | ||
|
||
def get_lr(self): | ||
return self.lr.eval() | ||
|
||
|
||
# because of https://github.com/fchollet/keras/pull/6859 | ||
|
||
def clip_norm(g, c, n): | ||
if c > 0: | ||
condition = n >= c | ||
then_expression = tf.scalar_mul(c / n, g) | ||
else_expression = g | ||
|
||
if isinstance(then_expression, tf.Tensor): | ||
g_shape = copy.copy(then_expression.get_shape()) | ||
elif isinstance(then_expression, tf.IndexedSlices): | ||
g_shape = copy.copy(then_expression.dense_shape) | ||
if condition.dtype != tf.bool: | ||
condition = tf.cast(condition, "bool") | ||
g = tf.cond(condition, | ||
lambda: then_expression, | ||
lambda: else_expression) | ||
if isinstance(then_expression, tf.Tensor): | ||
g.set_shape(g_shape) | ||
elif isinstance(then_expression, tf.IndexedSlices): | ||
g._dense_shape = g_shape | ||
|
||
return g |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,65 @@ | ||
import numpy as np | ||
from keras.models import Sequential | ||
from keras.layers import Embedding, Dense, LSTM, Activation, Dropout | ||
from model.lang_model_sgd import LangModelSGD | ||
from model.settings import DatasetSetting | ||
|
||
|
||
class OneHotModel(): | ||
|
||
def __init__(self, | ||
vocab_size, | ||
sentence_size, | ||
network_size="small", | ||
dataset_kind="ptb"): | ||
|
||
self.network_size = network_size | ||
self.dataset_kind = dataset_kind | ||
self.vocab_size = vocab_size | ||
self.sentence_size = sentence_size | ||
self.vector_length = self.get_vector_length(network_size) | ||
|
||
dset_setting = DatasetSetting.get(dataset_kind) | ||
dropout = dset_setting["dropout"][network_size] | ||
|
||
embedding = Embedding(self.vocab_size, self.vector_length, input_length=sentence_size) | ||
layer1 = LSTM(self.vector_length, return_sequences=True, dropout=dropout, recurrent_dropout=dropout) | ||
layer2 = LSTM(self.vector_length, return_sequences=False, dropout=dropout, recurrent_dropout=dropout) | ||
projection = Dense(self.vocab_size, activation="softmax") | ||
self.model = Sequential() | ||
self.model.add(embedding) | ||
self.model.add(layer1) | ||
self.model.add(layer2) | ||
self.model.add(projection) | ||
|
||
def get_vector_length(self, network_size): | ||
if network_size == "small": | ||
return 200 | ||
elif network_size == "medium": | ||
return 650 | ||
elif network_size == "large": | ||
return 1500 | ||
else: | ||
return 200 | ||
|
||
def compile(self): | ||
sgd = LangModelSGD(self.network_size, self.dataset_kind) | ||
self.model.compile( | ||
loss="categorical_crossentropy", | ||
optimizer=sgd | ||
) | ||
|
||
def fit(self, x_train, y_train, x_test, y_test, batch_size=32, epochs=20): | ||
self.model.fit( | ||
x_train, y_train, | ||
batch_size=batch_size, | ||
epochs=epochs | ||
) | ||
|
||
def predict(self, words): | ||
x = np.zeros((1, self.sentence_size)) | ||
for i, w in enumerate(words): | ||
x[0][i] = w | ||
pred = self.model.predict(x)[0] | ||
return pred | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,51 @@ | ||
class SizeSetting(): | ||
|
||
@classmethod | ||
def get(cls, kind): | ||
if kind == "small": | ||
return { | ||
"epoch_interval": 5, | ||
"decay": 0.9, | ||
"norm_clipping": 5 | ||
} | ||
elif kind == "medium": | ||
return { | ||
"epoch_interval": 10, | ||
"decay": 0.9, | ||
"norm_clipping": 5 | ||
} | ||
elif kind == "large": | ||
return { | ||
"epoch_interval": 1, | ||
"decay": 0.97, | ||
"norm_clipping": 6 | ||
} | ||
else: | ||
raise Exception("You have to choose size from small, medium, large") | ||
|
||
|
||
class DatasetSetting(): | ||
|
||
@classmethod | ||
def get(cls, kind): | ||
if kind == "ptb": | ||
return { | ||
"dropout": { | ||
"small": 0.7, | ||
"medium": 0.5, | ||
"large": 0.35 | ||
}, | ||
"gamma": 0.65 | ||
} | ||
elif kind == "wiki2": | ||
return { | ||
"dropout": { | ||
"small": 0.8, | ||
"medium": 0.6, | ||
"large": 0.6 | ||
}, | ||
"gamma": 1.25 | ||
} | ||
else: | ||
raise Exception("You have to choose dataset from ptb, wiki2") | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,33 @@ | ||
import os | ||
import numpy as np | ||
from model.one_hot_model import OneHotModel | ||
from model.data_processor import DataProcessor | ||
|
||
|
||
DATA_ROOT = os.path.join(os.path.dirname(__file__), "data") | ||
|
||
|
||
def flatten(data): | ||
flatted = [] | ||
for a in data.values.flatten(): | ||
flatted += a | ||
return np.array(flatted) | ||
|
||
def run_ptb(network_size="small"): | ||
# prepare the data | ||
dataset_kind = "ptb" | ||
dp = DataProcessor() | ||
ptb = dp.get_ptb(DATA_ROOT, vocab_size=10000) | ||
vocab_size = len(ptb.vocab_data()) | ||
sentence_size = 35 | ||
x_train, y_train = dp.format(flatten(ptb.train_data()), vocab_size, sentence_size) | ||
x_valid, y_valid = dp.format(flatten(ptb.valid_data()), vocab_size, sentence_size) | ||
|
||
# make one hot model | ||
model = OneHotModel(vocab_size, sentence_size, network_size, dataset_kind) | ||
model.compile() | ||
model.fit(x_valid, y_valid, x_valid, y_valid, epochs=1) | ||
|
||
|
||
if __name__ == "__main__": | ||
run_ptb() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,20 @@ | ||
import os | ||
import sys | ||
sys.path.append(os.path.join(os.path.dirname(__file__), "../")) | ||
import unittest | ||
import numpy as np | ||
from model.data_processor import DataProcessor | ||
|
||
|
||
class TestDataProcessor(unittest.TestCase): | ||
|
||
def test_format(self): | ||
dp = DataProcessor() | ||
samples = np.array(range(10)) | ||
x, y = dp.format(samples, 5, 3) | ||
self.assertEqual(x.shape, (7, 3)) | ||
self.assertEqual(y.shape, (7, 5)) | ||
|
||
|
||
if __name__ == "__main__": | ||
unittest.main() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,30 @@ | ||
import os | ||
import sys | ||
sys.path.append(os.path.join(os.path.dirname(__file__), "../")) | ||
import unittest | ||
import numpy as np | ||
from model.data_processor import DataProcessor | ||
from model.one_hot_model import OneHotModel | ||
|
||
|
||
class TestModel(unittest.TestCase): | ||
|
||
def test_one_hot_forward(self): | ||
vocab_size = 10 | ||
sentence_size = 20 | ||
|
||
dp = DataProcessor() | ||
samples = np.array(np.random.randint(vocab_size, size=100)) | ||
x, y = dp.format(samples, vocab_size, sentence_size) | ||
samples = np.array(np.random.randint(vocab_size, size=100)) | ||
x_t, y_t = dp.format(samples, vocab_size, sentence_size) | ||
|
||
model = OneHotModel(vocab_size, sentence_size) | ||
model.compile() | ||
model.fit(x, y, x_t, y_t, epochs=1) | ||
pred = model.predict(np.array([0,1,2])) | ||
print(pred) | ||
|
||
|
||
if __name__ == "__main__": | ||
unittest.main() |