Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat: support read_csv for backends with no native support #9908

Closed
wants to merge 19 commits into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
112 changes: 112 additions & 0 deletions ibis/backends/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,6 +4,7 @@
import collections.abc
import contextlib
import functools
import glob
import importlib.metadata
import keyword
import re
Expand Down Expand Up @@ -1269,6 +1270,117 @@
f"{cls.name} backend has not implemented `has_operation` API"
)

@util.experimental
def read_csv(
self, path: str | Path, table_name: str | None = None, **kwargs: Any
) -> ir.Table:
"""Register a CSV file as a table in the current backend.

This function reads a CSV file and registers it as a table in the current
backend. Note that for Impala and Trino backends, the performance may be suboptimal.

Parameters
----------
path
The data source. A string or Path to the CSV file.
table_name
An optional name to use for the created table. This defaults to
a sequentially generated name.
**kwargs
Additional keyword arguments passed to the backend loading function.
Common options are skip_rows, column_names, delimiter, and include_columns.
More details could be found:
https://arrow.apache.org/docs/python/generated/pyarrow.csv.ReadOptions.html
https://arrow.apache.org/docs/python/generated/pyarrow.csv.ParseOptions.html
https://arrow.apache.org/docs/python/generated/pyarrow.csv.ConvertOptions.html
Comment on lines +1277 to +1295
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Suggested change
"""Register a CSV file as a table in the current backend.
This function reads a CSV file and registers it as a table in the current
backend. Note that for Impala and Trino backends, the performance may be suboptimal.
Parameters
----------
path
The data source. A string or Path to the CSV file.
table_name
An optional name to use for the created table. This defaults to
a sequentially generated name.
**kwargs
Additional keyword arguments passed to the backend loading function.
Common options are skip_rows, column_names, delimiter, and include_columns.
More details could be found:
https://arrow.apache.org/docs/python/generated/pyarrow.csv.ReadOptions.html
https://arrow.apache.org/docs/python/generated/pyarrow.csv.ParseOptions.html
https://arrow.apache.org/docs/python/generated/pyarrow.csv.ConvertOptions.html
"""Register a CSV file as a table in the current backend.
This function reads a CSV file and registers it as a table in the
current backend. Note that for the Impala and Trino backends, the
performance may be suboptimal.
Parameters
----------
path
The data source. A string or Path to the CSV file.
table_name
An optional name to use for the created table. This defaults to a
sequentially generated name.
**kwargs
Additional keyword arguments passed to the PyArrow loading function.
Common options include:
- skip_rows
- column_names
- delimiter
- include_columns
A full list of options can be found on the following pages:
https://arrow.apache.org/docs/python/generated/pyarrow.csv.ReadOptions.html
https://arrow.apache.org/docs/python/generated/pyarrow.csv.ParseOptions.html
https://arrow.apache.org/docs/python/generated/pyarrow.csv.ConvertOptions.html
::: {.callout-note}
Options from each of the above reference pages can be passed directly to
this function, Ibis will handle sorting them into the appropriate
options buckets.
:::


Returns
-------
ir.Table
The just-registered table

Examples
--------
Connect to a SQLite database:

>>> con = ibis.sqlite.connect()

Read a single csv file:

>>> table = con.read_csv("path/to/file.csv")

Comment on lines +1308 to +1311
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Suggested change
Read a single csv file:
>>> table = con.read_csv("path/to/file.csv")
Read a single csv file:
>>> table = con.read_csv("path/to/file.csv")
Read a single csv file, skipping the first row, with a custom delimiter:
>>> table = con.read_csv("path/to/file.csv", skip_rows=1, delimiter=";")
Read a single csv file, but only load the specified columns:
>>> table = con.read_csv("path/to/file.csv", include_columns=["species", "island"])

Read all csv files in a directory:

>>> table = con.read_parquet("path/to/csv_directory/*")

Read all csv files with a glob pattern:

>>> table = con.read_csv("path/to/csv_directory/test_*.csv")

Read csv file from s3:

>>> table = con.read_csv("s3://bucket/path/to/file.csv")

Read csv file with custom pyarrow options:

>>> table = con.read_csv(
... "path/to/file.csv", delimiter=",", include_columns=["col1", "col3"]
... )
"""
pa = self._import_pyarrow()
import pyarrow.csv as pcsv
from pyarrow import fs

read_options_args = {}
parse_options_args = {}
convert_options_args = {}
memory_pool = None

for key, value in kwargs.items():
if hasattr(pcsv.ReadOptions, key):
read_options_args[key] = value
elif hasattr(pcsv.ParseOptions, key):
parse_options_args[key] = value
elif hasattr(pcsv.ConvertOptions, key):
convert_options_args[key] = value
elif key == "memory_pool":
memory_pool = value

Check warning on line 1347 in ibis/backends/__init__.py

View check run for this annotation

Codecov / codecov/patch

ibis/backends/__init__.py#L1347

Added line #L1347 was not covered by tests
else:
raise ValueError(f"Invalid args: {key!r}")

Check warning on line 1349 in ibis/backends/__init__.py

View check run for this annotation

Codecov / codecov/patch

ibis/backends/__init__.py#L1349

Added line #L1349 was not covered by tests
jitingxu1 marked this conversation as resolved.
Show resolved Hide resolved

read_options = pcsv.ReadOptions(**read_options_args)
parse_options = pcsv.ParseOptions(**parse_options_args)
convert_options = pcsv.ConvertOptions(**convert_options_args)
if not memory_pool:
memory_pool = pa.default_memory_pool()

path = str(path)
file_system, path = fs.FileSystem.from_uri(path)

if isinstance(file_system, fs.LocalFileSystem):
paths = glob.glob(path)
if not paths:
raise FileNotFoundError(f"No files found at {path!r}")

Check warning on line 1363 in ibis/backends/__init__.py

View check run for this annotation

Codecov / codecov/patch

ibis/backends/__init__.py#L1363

Added line #L1363 was not covered by tests
else:
paths = [path]

Check warning on line 1365 in ibis/backends/__init__.py

View check run for this annotation

Codecov / codecov/patch

ibis/backends/__init__.py#L1365

Added line #L1365 was not covered by tests

pyarrow_tables = []
for path in paths:
with file_system.open_input_file(path) as f:
pyarrow_table = pcsv.read_csv(
f,
read_options=read_options,
parse_options=parse_options,
convert_options=convert_options,
memory_pool=memory_pool,
)
pyarrow_tables.append(pyarrow_table)

pyarrow_table = pa.concat_tables(pyarrow_tables)
table_name = table_name or util.gen_name("read_csv")
self.create_table(table_name, pyarrow_table)
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Hm, I think this should probably be a temp table or a memtable, because none of our other read_* functions create a persistent object

Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

memtable is probably a good option

return self.table(table_name)

def _transpile_sql(self, query: str, *, dialect: str | None = None) -> str:
# only transpile if dialect was passed
if dialect is None:
Expand Down
136 changes: 113 additions & 23 deletions ibis/backends/tests/test_register.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,7 +12,11 @@

import ibis
from ibis.backends.conftest import TEST_TABLES
from ibis.backends.tests.errors import PySparkAnalysisException
from ibis.backends.tests.errors import (
MySQLOperationalError,
PyODBCProgrammingError,
PySparkAnalysisException,
)
from ibis.conftest import IS_SPARK_REMOTE

if TYPE_CHECKING:
Expand All @@ -21,9 +25,10 @@
import pyarrow as pa

pytestmark = [
pytest.mark.notimpl(["druid", "exasol", "oracle"]),
pytest.mark.notyet(
["pyspark"], condition=IS_SPARK_REMOTE, raises=PySparkAnalysisException
["pyspark"],
condition=IS_SPARK_REMOTE,
raises=PySparkAnalysisException,
Comment on lines +29 to +31
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This seems like an unrelated formatting change

),
]

Expand Down Expand Up @@ -103,6 +108,7 @@ def gzip_csv(data_dir, tmp_path):
"trino",
]
)
@pytest.mark.notimpl(["druid", "exasol", "oracle"])
def test_register_csv(con, data_dir, fname, in_table_name, out_table_name):
with pushd(data_dir / "csv"):
with pytest.warns(FutureWarning, match="v9.1"):
Expand All @@ -114,7 +120,7 @@ def test_register_csv(con, data_dir, fname, in_table_name, out_table_name):


# TODO: rewrite or delete test when register api is removed
@pytest.mark.notimpl(["datafusion"])
@pytest.mark.notimpl(["datafusion", "druid", "exasol", "oracle"])
@pytest.mark.notyet(
[
"bigquery",
Expand Down Expand Up @@ -154,6 +160,7 @@ def test_register_csv_gz(con, data_dir, gzip_csv):
"trino",
]
)
@pytest.mark.notimpl(["druid", "exasol", "oracle"])
def test_register_with_dotted_name(con, data_dir, tmp_path):
basename = "foo.bar.baz/diamonds.csv"
f = tmp_path.joinpath(basename)
Expand Down Expand Up @@ -211,6 +218,7 @@ def read_table(path: Path) -> Iterator[tuple[str, pa.Table]]:
"trino",
]
)
@pytest.mark.notimpl(["druid", "exasol", "oracle"])
def test_register_parquet(
con, tmp_path, data_dir, fname, in_table_name, out_table_name
):
Expand Down Expand Up @@ -249,6 +257,7 @@ def test_register_parquet(
"trino",
]
)
@pytest.mark.notimpl(["druid", "exasol", "oracle"])
def test_register_iterator_parquet(
con,
tmp_path,
Expand Down Expand Up @@ -277,7 +286,7 @@ def test_register_iterator_parquet(
# TODO: remove entirely when `register` is removed
# This same functionality is implemented across all backends
# via `create_table` and tested in `test_client.py`
@pytest.mark.notimpl(["datafusion"])
@pytest.mark.notimpl(["datafusion", "druid", "exasol", "oracle"])
@pytest.mark.notyet(
[
"bigquery",
Expand Down Expand Up @@ -311,7 +320,7 @@ def test_register_pandas(con):
# TODO: remove entirely when `register` is removed
# This same functionality is implemented across all backends
# via `create_table` and tested in `test_client.py`
@pytest.mark.notimpl(["datafusion", "polars"])
@pytest.mark.notimpl(["datafusion", "polars", "druid", "exasol", "oracle"])
@pytest.mark.notyet(
[
"bigquery",
Expand Down Expand Up @@ -352,6 +361,7 @@ def test_register_pyarrow_tables(con):
"trino",
]
)
@pytest.mark.notimpl(["druid", "exasol", "oracle"])
def test_csv_reregister_schema(con, tmp_path):
foo = tmp_path.joinpath("foo.csv")
with foo.open("w", newline="") as csvfile:
Expand Down Expand Up @@ -380,10 +390,13 @@ def test_csv_reregister_schema(con, tmp_path):
"bigquery",
"clickhouse",
"datafusion",
"druid",
"exasol",
"flink",
"impala",
"mysql",
"mssql",
"oracle",
"polars",
"postgres",
"risingwave",
Expand Down Expand Up @@ -417,6 +430,7 @@ def test_register_garbage(con, monkeypatch):
@pytest.mark.notyet(
["flink", "impala", "mssql", "mysql", "postgres", "risingwave", "sqlite", "trino"]
)
@pytest.mark.notimpl(["druid", "exasol", "oracle"])
def test_read_parquet(con, tmp_path, data_dir, fname, in_table_name):
pq = pytest.importorskip("pyarrow.parquet")

Expand Down Expand Up @@ -457,6 +471,7 @@ def ft_data(data_dir):
"trino",
]
)
@pytest.mark.notimpl(["druid", "exasol", "oracle"])
def test_read_parquet_glob(con, tmp_path, ft_data):
pq = pytest.importorskip("pyarrow.parquet")

Expand All @@ -473,18 +488,10 @@ def test_read_parquet_glob(con, tmp_path, ft_data):
assert table.count().execute() == nrows * ntables


@pytest.mark.notyet(
[
"flink",
"impala",
"mssql",
"mysql",
"postgres",
"risingwave",
"sqlite",
"trino",
]
)
@pytest.mark.notyet(["flink"])
@pytest.mark.notimpl(["druid"])
@pytest.mark.notimpl(["mssql"], raises=PyODBCProgrammingError)
@pytest.mark.notimpl(["mysql"], raises=MySQLOperationalError)
def test_read_csv_glob(con, tmp_path, ft_data):
pc = pytest.importorskip("pyarrow.csv")

Expand Down Expand Up @@ -519,6 +526,7 @@ def test_read_csv_glob(con, tmp_path, ft_data):
raises=ValueError,
reason="read_json() missing required argument: 'schema'",
)
@pytest.mark.notimpl(["druid", "exasol", "oracle"])
def test_read_json_glob(con, tmp_path, ft_data):
nrows = len(ft_data)
ntables = 2
Expand Down Expand Up @@ -562,14 +570,26 @@ def num_diamonds(data_dir):
"in_table_name",
[param(None, id="default"), param("fancy_stones", id="file_name")],
)
@pytest.mark.notyet(
["flink", "impala", "mssql", "mysql", "postgres", "risingwave", "sqlite", "trino"]
)
@pytest.mark.notyet(["flink"])
@pytest.mark.notimpl(["druid", "exasol", "oracle"])
def test_read_csv(con, data_dir, in_table_name, num_diamonds):
if con.name in ("trino", "impala"):
# TODO: remove after trino and impala have efficient insertion
pytest.skip(
"Both Impala and Trino lack efficient data insertion methods from Python."
)
fname = "diamonds.csv"
with pushd(data_dir / "csv"):
if con.name == "pyspark":
# pyspark doesn't respect CWD
if con.name in (
"pyspark",
"sqlite",
"mysql",
"postgres",
"risingwave",
"mssql",
):
jitingxu1 marked this conversation as resolved.
Show resolved Hide resolved
# pyspark backend doesn't respect CWD
# backends using pyarrow implementation need absolute path
fname = str(Path(fname).absolute())
table = con.read_csv(fname, table_name=in_table_name)

Expand All @@ -594,3 +614,73 @@ def test_read_csv(con, data_dir, in_table_name, num_diamonds):
}
)
assert table.count().execute() == num_diamonds


@pytest.mark.parametrize(
("skip_rows", "new_column_names", "delimiter", "include_columns"),
[
param(True, True, False, False, id="skip_rows_with_column_names"),
param(False, False, False, True, id="include_columns"),
param(False, False, True, False, id="delimiter"),
],
)
@pytest.mark.notyet(["flink"])
@pytest.mark.notimpl(["druid"])
@pytest.mark.never(
[
"duckdb",
"polars",
"bigquery",
"clickhouse",
"datafusion",
"snowflake",
"pyspark",
],
reason="backend implements its own read_csv",
)
Comment on lines +629 to +640
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Suggested change
@pytest.mark.never(
[
"duckdb",
"polars",
"bigquery",
"clickhouse",
"datafusion",
"snowflake",
"pyspark",
],
reason="backend implements its own read_csv",
)

You can remove this since you are skipping them inside the test body

@pytest.mark.notimpl(["mssql"], raises=PyODBCProgrammingError)
@pytest.mark.notimpl(["mysql"], raises=MySQLOperationalError)
def test_read_csv_pyarrow_options(
con, tmp_path, ft_data, skip_rows, new_column_names, delimiter, include_columns
):
pc = pytest.importorskip("pyarrow.csv")

if con.name in (
"duckdb",
"polars",
"bigquery",
"clickhouse",
"datafusion",
"snowflake",
"pyspark",
):
pytest.skip(f"{con.name} implements its own `read_parquet`")
Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

these backends have their own implementation, some of these options still could pass this test, so I skip these backends.

Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Suggested change
pytest.skip(f"{con.name} implements its own `read_parquet`")
pytest.skip(f"{con.name} implements its own `read_csv`")


column_names = ft_data.column_names
num_rows = ft_data.num_rows
fname = "tmp.csv"
pc.write_csv(ft_data, tmp_path / fname)

options = {}
if skip_rows:
options["skip_rows"] = 2
num_rows = num_rows - options["skip_rows"] + 1
if new_column_names:
column_names = [f"col_{i}" for i in range(ft_data.num_columns)]
options["column_names"] = column_names
if delimiter:
new_delimiter = "*"
options["delimiter"] = new_delimiter
pc.write_csv(
ft_data, tmp_path / fname, pc.WriteOptions(delimiter=new_delimiter)
)
if include_columns:
# try to include all types here
# pick the first 12 columns
column_names = column_names[:12]
options["include_columns"] = column_names

table = con.read_csv(tmp_path / fname, **options)

assert set(table.columns) == set(column_names)
assert table.count().execute() == num_rows