-
Notifications
You must be signed in to change notification settings - Fork 605
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
test: add test for impure function correlation behavior
Related to #8921, trying to write down exactly what the expected behavior is.
- Loading branch information
Showing
2 changed files
with
215 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,213 @@ | ||
from __future__ import annotations | ||
|
||
import sys | ||
|
||
import pandas.testing as tm | ||
import pytest | ||
|
||
import ibis | ||
import ibis.common.exceptions as com | ||
from ibis import _ | ||
from ibis.backends.tests.errors import ( | ||
PsycoPg2InternalError, | ||
PsycoPg2UniqueViolation, | ||
Py4JJavaError, | ||
PyDruidProgrammingError, | ||
) | ||
|
||
no_randoms = [ | ||
pytest.mark.notimpl( | ||
["dask", "pandas", "polars"], raises=com.OperationNotDefinedError | ||
), | ||
pytest.mark.notimpl("druid", raises=PyDruidProgrammingError), | ||
pytest.mark.notyet( | ||
"risingwave", | ||
raises=PsycoPg2InternalError, | ||
reason="function random() does not exist", | ||
), | ||
] | ||
|
||
no_udfs = [ | ||
pytest.mark.notyet("datafusion", raises=NotImplementedError), | ||
pytest.mark.notimpl( | ||
[ | ||
"bigquery", | ||
"clickhouse", | ||
"dask", | ||
"druid", | ||
"exasol", | ||
"impala", | ||
"mssql", | ||
"mysql", | ||
"oracle", | ||
"pandas", | ||
"trino", | ||
"risingwave", | ||
] | ||
), | ||
pytest.mark.notimpl("pyspark", reason="only supports pandas UDFs"), | ||
pytest.mark.broken( | ||
"flink", | ||
condition=sys.version_info >= (3, 11), | ||
raises=Py4JJavaError, | ||
reason="Docker image has Python 3.10, results in `cloudpickle` version mismatch", | ||
), | ||
] | ||
|
||
no_uuids = [ | ||
pytest.mark.notimpl( | ||
[ | ||
"druid", | ||
"exasol", | ||
"oracle", | ||
"polars", | ||
"pyspark", | ||
"risingwave", | ||
"pandas", | ||
"dask", | ||
], | ||
raises=com.OperationNotDefinedError, | ||
), | ||
pytest.mark.broken("mssql", reason="Unrelated bug: Incorrect syntax near '('"), | ||
] | ||
|
||
|
||
@ibis.udf.scalar.python(side_effects=True) | ||
def my_random(x: float) -> float: | ||
# need to make the whole UDF self-contained for postgres to work | ||
import random | ||
|
||
return random.random() # noqa: S311 | ||
|
||
|
||
mark_impures = pytest.mark.parametrize( | ||
"impure", | ||
[ | ||
pytest.param( | ||
lambda _: ibis.random(), | ||
marks=no_randoms, | ||
id="random", | ||
), | ||
pytest.param( | ||
lambda _: ibis.uuid().cast(str).contains("a").ifelse(1, 0), | ||
marks=[ | ||
*no_uuids, | ||
pytest.mark.broken("impala", reason="instances are uncorrelated"), | ||
], | ||
id="uuid", | ||
), | ||
pytest.param( | ||
lambda table: my_random(table.float_col), | ||
marks=[ | ||
*no_udfs, | ||
pytest.mark.broken( | ||
["flink", "postgres"], reason="instances are uncorrelated" | ||
), | ||
], | ||
id="udf", | ||
), | ||
], | ||
) | ||
|
||
|
||
@pytest.mark.broken("sqlite", reason="instances are uncorrelated") | ||
@mark_impures | ||
def test_impure_correlated(alltypes, impure): | ||
# An "impure" expression is random(), uuid(), or some other non-deterministic UDF. | ||
# If we evaluate it for two different rows in the same relation, | ||
# we might get different results. This is expected. | ||
# But, as soon as we .select() it into a new relation, then that "locks in" the | ||
# value, and any further references to it will be the same. | ||
# eg if you look at the following SQL: | ||
# WITH | ||
# t AS (SELECT random() AS common) | ||
# SELECT common as x, common as y FROM t | ||
# Then both x and y should have the same value. | ||
df = ( | ||
alltypes.select(common=impure(alltypes)) | ||
.select(x=_.common, y=_.common) | ||
.execute() | ||
) | ||
tm.assert_series_equal(df.x, df.y, check_names=False) | ||
|
||
|
||
@pytest.mark.broken("sqlite", reason="instances are uncorrelated") | ||
@mark_impures | ||
def test_chained_selections(alltypes, impure): | ||
# https://github.com/ibis-project/ibis/issues/8921#issue-2234327722 | ||
# This is a slightly more complex version of test_impure_correlated. | ||
# consider this SQL: | ||
# WITH | ||
# t AS (SELECT random() AS num) | ||
# SELECT num, num > 0.5 AS isbig FROM t | ||
# We would expect that the value of num and isbig are consistent, | ||
# since we "lock in" the value of num by selecting it into t. | ||
t = alltypes.select(num=impure(alltypes)) | ||
t = t.mutate(isbig=(t.num > 0.5)) | ||
df = t.execute() | ||
df["expected"] = df.num > 0.5 | ||
tm.assert_series_equal(df.isbig, df.expected, check_names=False) | ||
|
||
|
||
impure_params_uncorrelated = pytest.mark.parametrize( | ||
"impure", | ||
[ | ||
pytest.param( | ||
lambda _: ibis.random(), | ||
marks=[ | ||
*no_randoms, | ||
pytest.mark.broken( | ||
["impala", "trino"], reason="instances are correlated" | ||
), | ||
], | ||
id="random", | ||
), | ||
pytest.param( | ||
# make this a float so we can compare to .5 | ||
lambda _: ibis.uuid().cast(str).contains("a").ifelse(1, 0), | ||
marks=[ | ||
*no_uuids, | ||
pytest.mark.broken( | ||
["mysql", "trino"], reason="instances are correlated" | ||
), | ||
], | ||
id="uuid", | ||
), | ||
pytest.param( | ||
lambda table: my_random(table.float_col), | ||
marks=[ | ||
*no_udfs, | ||
pytest.mark.broken("duckdb", reason="instances are correlated"), | ||
], | ||
id="udf", | ||
), | ||
], | ||
) | ||
|
||
|
||
@pytest.mark.broken(["clickhouse"], reason="instances are correlated") | ||
@pytest.mark.broken( | ||
["postgres"], | ||
reason='duplicate key value violates unique constraint "pg_proc_proname_args_nsp_index"', | ||
raises=PsycoPg2UniqueViolation, | ||
) | ||
@impure_params_uncorrelated | ||
def test_impure_uncorrelated_different_id(alltypes, impure): | ||
# This is the opposite of test_impure_correlated. | ||
# If we evaluate an impure expression for two different rows in the same relation, | ||
# the should be uncorrelated. | ||
# eg if you look at the following SQL: | ||
# select random() as x, random() as y | ||
# Then x and y should be uncorrelated. | ||
df = alltypes.select(x=impure(alltypes), y=impure(alltypes)).execute() | ||
assert (df.x != df.y).any() | ||
|
||
|
||
@pytest.mark.broken(["clickhouse"], reason="instances are correlated") | ||
@impure_params_uncorrelated | ||
def test_impure_uncorrelated_same_id(alltypes, impure): | ||
# Similar to test_impure_uncorrelated_different_id, but the two expressions | ||
# have the same ID. Still, they should be uncorrelated. | ||
common = impure(alltypes) | ||
df = alltypes.select(x=common, y=common).execute() | ||
assert (df.x != df.y).any() |