Skip to content

Commit

Permalink
cann : add Ascend NPU support (ggerganov#2336)
Browse files Browse the repository at this point in the history
* enable Ascend NPU in src/whisper.cpp
  * sync test-backend-ops with llama.cpp
  • Loading branch information
MengqingCao authored and iThalay committed Sep 23, 2024
1 parent 780fcdf commit 48d914e
Show file tree
Hide file tree
Showing 3 changed files with 128 additions and 21 deletions.
4 changes: 2 additions & 2 deletions ggml/src/ggml-cann/Doxyfile
Original file line number Diff line number Diff line change
Expand Up @@ -32,7 +32,7 @@ DOXYFILE_ENCODING = UTF-8
# title of most generated pages and in a few other places.
# The default value is: My Project.

PROJECT_NAME = "llama.cpp"
PROJECT_NAME = "whisper.cpp"

# The PROJECT_NUMBER tag can be used to enter a project or revision number. This
# could be handy for archiving the generated documentation or if some version
Expand All @@ -44,7 +44,7 @@ PROJECT_NUMBER =
# for a project that appears at the top of each page and should give viewer a
# quick idea about the purpose of the project. Keep the description short.

PROJECT_BRIEF = "llama inference engine"
PROJECT_BRIEF = "Port of OpenAI's Whisper model in C/C++"

# With the PROJECT_LOGO tag one can specify a logo or an icon that is included
# in the documentation. The maximum height of the logo should not exceed 55
Expand Down
22 changes: 20 additions & 2 deletions src/whisper.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -29,6 +29,10 @@
#include "openvino/whisper-openvino-encoder.h"
#endif

#ifdef GGML_USE_CANN
#include "ggml-cann.h"
#endif

#include "ggml.h"
#include "ggml-alloc.h"
#include "ggml-backend.h"
Expand Down Expand Up @@ -1283,6 +1287,16 @@ static ggml_backend_t whisper_backend_init_gpu(const whisper_context_params & pa
}
#endif

#ifdef GGML_USE_CANN
if (params.use_gpu) {
WHISPER_LOG_INFO("%s: using CANN backend\n", __func__);
result = ggml_backend_cann_init(params.gpu_device);
if (!result) {
WHISPER_LOG_ERROR("%s: ggml_backend_cann_init() failed\n", __func__);
}
}
#endif

return result;
}

Expand Down Expand Up @@ -1335,6 +1349,10 @@ static ggml_backend_buffer_type_t whisper_default_buffer_type(const whisper_cont
result || (result = ggml_backend_vk_buffer_type(params.gpu_device));
#endif

#ifdef GGML_USE_CANN
result || (result == ggml_backend_cann_buffer_type(params.gpu_device));
#endif

result || (result = ggml_backend_cpu_buffer_type());

return result;
Expand Down Expand Up @@ -4337,8 +4355,8 @@ const char * whisper_print_system_info(void) {
s += "VSX = " + std::to_string(ggml_cpu_has_vsx()) + " | ";
s += "CUDA = " + std::to_string(ggml_cpu_has_cuda()) + " | ";
s += "COREML = " + std::to_string(whisper_has_coreml()) + " | ";
s += "OPENVINO = " + std::to_string(whisper_has_openvino()) ;

s += "OPENVINO = " + std::to_string(whisper_has_openvino()) + " | ";
s += "CANN = " + std::to_string(ggml_cpu_has_cann()) ;
return s.c_str();
}

Expand Down
123 changes: 106 additions & 17 deletions tests/test-backend-ops.cpp
Original file line number Diff line number Diff line change
@@ -1,7 +1,6 @@
#include <ggml.h>
#include <ggml-alloc.h>
#include <ggml-backend.h>
#include <ggml-backend-impl.h>

#include <algorithm>
#include <array>
Expand Down Expand Up @@ -80,14 +79,22 @@ static void init_tensor_uniform(ggml_tensor * tensor, float min = -1.0f, float m
im = nullptr;
}
}

ggml_quantize_chunk(tensor->type, data.data(), dataq.data(), 0, size/tensor->ne[0], tensor->ne[0], im);
GGML_ASSERT(ggml_validate_row_data(tensor->type, dataq.data(), dataq.size()));
// TODO: other cases
//#pragma omp parallel for
//for (int i = 0; i < tensor->ne[1]; i++) {
// ggml_quantize_chunk(tensor->type, data.data(), dataq.data(),
// i * tensor->ne[0], 1, tensor->ne[0], im);
//}

ggml_backend_tensor_set(tensor, dataq.data(), 0, dataq.size());
} else if (tensor->type == GGML_TYPE_I8 || tensor->type == GGML_TYPE_I16 || tensor->type == GGML_TYPE_I32) {
// This is going to create some weird integers though.
ggml_backend_tensor_set(tensor, data.data(), 0, ggml_nbytes(tensor));
} else {
GGML_ASSERT(false);
GGML_ABORT("fatal error");
}
}

Expand Down Expand Up @@ -125,7 +132,7 @@ static std::vector<float> tensor_to_float(const ggml_tensor * t) {
tt.to_float(&buf[i], vq.data(), bs);
tv.insert(tv.end(), vq.begin(), vq.end());
} else {
GGML_ASSERT(false);
GGML_ABORT("fatal error");
}
}
}
Expand Down Expand Up @@ -760,7 +767,7 @@ struct test_dup : public test_case {
}

test_dup(ggml_type type = GGML_TYPE_F32,
std::array<int64_t, 4> ne = {10, 10, 10, 1},
std::array<int64_t, 4> ne = {10, 10, 20, 1},
std::array<int64_t, 4> permute = {0, 0, 0, 0})
: type(type), ne(ne), permute(permute),
_use_permute(permute[0] + permute[1] + permute[2] + permute[3] > 0) {}
Expand All @@ -780,9 +787,11 @@ struct test_cpy : public test_case {
const ggml_type type_src;
const ggml_type type_dst;
const std::array<int64_t, 4> ne;
const std::array<int64_t, 4> permute;
bool _src_use_permute;

std::string vars() override {
return VARS_TO_STR3(type_src, type_dst, ne);
return VARS_TO_STR4(type_src, type_dst, ne, permute);
}

double max_nmse_err() override {
Expand All @@ -794,12 +803,17 @@ struct test_cpy : public test_case {
}

test_cpy(ggml_type type_src = GGML_TYPE_F32, ggml_type type_dst = GGML_TYPE_F32,
std::array<int64_t, 4> ne = {10, 10, 10, 1})
: type_src(type_src), type_dst(type_dst), ne(ne) {}
std::array<int64_t, 4> ne = {10, 10, 10, 1},
std::array<int64_t, 4> permute = {0, 0, 0, 0})
: type_src(type_src), type_dst(type_dst), ne(ne), permute(permute),
_src_use_permute(permute[0] + permute[1] + permute[2] + permute[3] > 0) {}

ggml_tensor * build_graph(ggml_context * ctx) override {
ggml_tensor * src = ggml_new_tensor(ctx, type_src, 4, ne.data());
ggml_tensor * dst = ggml_new_tensor(ctx, type_dst, 4, ne.data());
if (_src_use_permute) {
src = ggml_permute(ctx, src, permute[0], permute[1], permute[2], permute[3]);
}
ggml_tensor* dst = ggml_new_tensor(ctx, type_dst, 4, src->ne);
ggml_tensor * out = ggml_cpy(ctx, src, dst);
return out;
}
Expand Down Expand Up @@ -1175,6 +1189,7 @@ struct test_soft_max : public test_case {
}
};


// GGML_OP_ROPE
struct test_rope : public test_case {
const ggml_type type;
Expand Down Expand Up @@ -1267,6 +1282,32 @@ struct test_pool2d : public test_case {
}
};

// GGML_OP_CONV_TRANSPOSE_1D
struct test_conv_transpose_1d : public test_case {
const std::array<int64_t, 4> ne_input;
const std::array<int64_t, 4> ne_kernel;

const int s0; // stride
const int p0; // padding
const int d0; // dilation

std::string vars() override {
return VARS_TO_STR5(ne_input, ne_kernel, s0, p0, d0);
}

test_conv_transpose_1d(std::array<int64_t, 4> ne_input = {197, 32, 1, 1}, // [input_width, input_height, input_channels, 1]
std::array<int64_t, 4> ne_kernel = {16, 32, 32, 1}, // [kernel_width, kernel_height, input_channels, 1]
int s0 = 1, int p0 = 0, int d0 = 1)
: ne_input(ne_input), ne_kernel(ne_kernel), s0(s0), p0(p0), d0(d0) {}

ggml_tensor * build_graph(ggml_context * ctx) override {
ggml_tensor * input = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_input.data());
ggml_tensor * kernel = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_kernel.data());
ggml_tensor * out = ggml_conv_transpose_1d(ctx, kernel, input, s0, p0, d0);
return out;
}
};

// GGML_OP_IM2COL
struct test_im2col : public test_case {
const ggml_type type_input;
Expand All @@ -1280,7 +1321,7 @@ struct test_im2col : public test_case {
// padding
const int p0;
const int p1;
// dilatation
// dilation
const int d0;
const int d1;
// mode
Expand Down Expand Up @@ -1393,7 +1434,7 @@ struct test_argsort : public test_case {
ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(float));
}
} else {
GGML_ASSERT(false);
GGML_ABORT("fatal error");
}
}
}
Expand Down Expand Up @@ -1470,19 +1511,21 @@ struct test_group_norm : public test_case {
const ggml_type type;
const std::array<int64_t, 4> ne;
const int32_t num_groups;
const float eps;

std::string vars() override {
return VARS_TO_STR3(type, ne, num_groups);
}

test_group_norm(ggml_type type = GGML_TYPE_F32,
std::array<int64_t, 4> ne = {64, 64, 320, 1},
int32_t num_groups = 32)
: type(type), ne(ne), num_groups(num_groups) {}
int32_t num_groups = 32,
float eps = 1e-6f)
: type(type), ne(ne), num_groups(num_groups), eps(eps) {}

ggml_tensor * build_graph(ggml_context * ctx) override {
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
ggml_tensor * out = ggml_group_norm(ctx, a, num_groups);
ggml_tensor * out = ggml_group_norm(ctx, a, num_groups, eps);
return out;
}
};
Expand Down Expand Up @@ -2053,6 +2096,7 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op
GGML_TYPE_IQ2_XS, GGML_TYPE_IQ2_S,
GGML_TYPE_IQ3_XXS, GGML_TYPE_IQ1_S, GGML_TYPE_IQ1_M,
GGML_TYPE_IQ4_NL, GGML_TYPE_IQ3_S, GGML_TYPE_IQ4_XS,
GGML_TYPE_BF16,
};

// unary ops
Expand Down Expand Up @@ -2097,6 +2141,19 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op

test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32));
test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16));
// test cases for 1D im2col
test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {3000, 128, 1, 1}, {3, 128, 1280, 1}, 1, 0, 1, 0, 1, 0, false));
test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32, {3000, 128, 1, 1}, {3, 128, 1280, 1}, 1, 0, 1, 0, 1, 0, false));

test_cases.emplace_back(new test_conv_transpose_1d());
test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {2,3,2,1}, 3, 0, 1));
test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {2,3,2,1}, 2, 0, 1));
test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {2,3,2,1}, 1, 0, 1));
test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {3,2,2,1}, 2, 0, 1));
test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {3,2,2,1}, 1, 0, 1));
test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {3,1,2,1}, 1, 0, 1));
test_cases.emplace_back(new test_conv_transpose_1d({2,1,1,1}, {3,1,1,1}, 1, 0, 1));


test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 10, 10, 10}, {1, 1, 1, 1}));
test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 10, 10, 10}, {2, 1, 1, 1}));
Expand All @@ -2110,12 +2167,22 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op
test_cases.emplace_back(new test_dup(GGML_TYPE_F16));
test_cases.emplace_back(new test_dup(GGML_TYPE_I32));
test_cases.emplace_back(new test_dup(GGML_TYPE_I16));
test_cases.emplace_back(new test_dup(GGML_TYPE_F32, {10, 10, 5, 1}, {0, 2, 1, 3}));
test_cases.emplace_back(new test_dup(GGML_TYPE_F16, {10, 10, 5, 1}, {0, 2, 1, 3})); // dup by rows
test_cases.emplace_back(new test_dup(GGML_TYPE_F32, {10, 10, 5, 1}, {1, 0, 2, 3}));
test_cases.emplace_back(new test_dup(GGML_TYPE_F16, {10, 10, 5, 1}, {1, 0, 2, 3})); // dup dst not-contiguous
test_cases.emplace_back(new test_dup(GGML_TYPE_I16, {10, 8, 3, 1}, {0, 2, 1, 3}));
test_cases.emplace_back(new test_dup(GGML_TYPE_I16, {10, 8, 3, 1}, {1, 2, 0, 3}));

for (ggml_type type_src : {GGML_TYPE_F16, GGML_TYPE_F32}) {
for (ggml_type type_dst : all_types) {
test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 4, 4, 4}));
test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 2, 3, 4}, {0, 2, 1, 3})); // cpy by rows
}
}
for (ggml_type type_src : {GGML_TYPE_F16, GGML_TYPE_F32}) {
for (ggml_type type_dst : {GGML_TYPE_F16, GGML_TYPE_F32}) {
test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 2, 3, 4}, {1, 0, 2, 3})); // cpy not-contiguous
}
}

Expand Down Expand Up @@ -2165,6 +2232,7 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op
test_cases.emplace_back(new test_rms_norm(GGML_TYPE_F32, {64, 10, 10, 10}, eps));
}

#if 1
for (ggml_type type_a : base_types) {
for (ggml_type type_b : {GGML_TYPE_F32, GGML_TYPE_F16}) {
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, { 1, 1}, {1, 1}));
Expand All @@ -2184,10 +2252,31 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {10, 10}, {2, 2}));
}
}
#else
// m = a rows
// n = b rows
// k = cols
std::uniform_int_distribution<> dist_m(1, 128);
std::uniform_int_distribution<> dist_n(16, 128);
std::uniform_int_distribution<> dist_k(1, 16);
for (int i = 0; i < 1000; i++) {
for (ggml_type type_a : all_types) {
for (ggml_type type_b : {GGML_TYPE_F32}) {
int m = dist_m(rng);
int n = dist_n(rng);
int k = dist_k(rng) * ggml_blck_size(type_a);
test_cases.emplace_back(new test_mul_mat(type_a, type_b, m, n, k, { 1, 1}, {1, 1}));
}
}
}
#endif

for (ggml_type type_a : other_types) {
for (ggml_type type_b : {GGML_TYPE_F32}) {
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, { 1, 1}, {1, 1}));
if (ggml_blck_size(type_a) != 256) {
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, ggml_blck_size(type_a), {1, 1}, {1, 1}));
}
test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {1, 1}, {1, 1}));
}
}

Expand Down Expand Up @@ -2247,7 +2336,7 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op
for (int n = 0; n < 10; ++n) {
int64_t ne0 = dist_ne0(rng);
int64_t ne1 = dist_ne1(rng);
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0, ne1, 1, 1}, n/2 == 0, 0.1f, ne0 < 1000 ? 4.0f : 0.0f));
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, GGML_TYPE_F32, {ne0, ne1, 1, 1}, n/2 == 0, 0.1f, ne0 < 1000 ? 4.0f : 0.0f));
}

exponent <<= 1;
Expand All @@ -2266,7 +2355,7 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op
}
}
}

test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, true, 0.1f, 0.0f));
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, false, 0.1f, 0.0f));
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, 0.1f, 0.0f));
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, 0.1f, 8.0f));
Expand Down Expand Up @@ -2380,7 +2469,7 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op
return true;
}

GGML_ASSERT(false);
GGML_ABORT("fatal error");
return false;
}

Expand Down

0 comments on commit 48d914e

Please sign in to comment.