Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

fsdp fixes and enhancements #24980

Merged
merged 4 commits into from
Jul 21, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions docs/source/en/main_classes/trainer.md
Original file line number Diff line number Diff line change
Expand Up @@ -441,7 +441,7 @@ as the model saving with FSDP activated is only available with recent fixes.
- Remaining FSDP config is passed via `--fsdp_config <path_to_fsdp_config.json>`. It is either a location of
FSDP json config file (e.g., `fsdp_config.json`) or an already loaded json file as `dict`.
- If auto wrapping is enabled, you can either use transformer based auto wrap policy or size based auto wrap policy.
- For transformer based auto wrap policy, please specify `fsdp_transformer_layer_cls_to_wrap` in the config file.
- For transformer based auto wrap policy, it is recommended to specify `fsdp_transformer_layer_cls_to_wrap` in the config file. If not specified, the default value is `model._no_split_modules` when available.
This specifies the list of transformer layer class name (case-sensitive) to wrap ,e.g, [`BertLayer`], [`GPTJBlock`], [`T5Block`] ....
This is important because submodules that share weights (e.g., embedding layer) should not end up in different FSDP wrapped units.
Using this policy, wrapping happens for each block containing Multi-Head Attention followed by couple of MLP layers.
Expand Down Expand Up @@ -482,7 +482,7 @@ Pass `--fsdp "full shard"` along with following changes to be made in `--fsdp_co
This setting can only be used when the xla flag is set to true, and an auto wrapping policy is specified through
`fsdp_min_num_params` or `fsdp_transformer_layer_cls_to_wrap`.
- You can either use transformer based auto wrap policy or size based auto wrap policy.
- For transformer based auto wrap policy, please specify `fsdp_transformer_layer_cls_to_wrap` in the config file.
- For transformer based auto wrap policy, it is recommended to specify `fsdp_transformer_layer_cls_to_wrap` in the config file. If not specified, the default value is `model._no_split_modules` when available.
This specifies the list of transformer layer class name (case-sensitive) to wrap ,e.g, [`BertLayer`], [`GPTJBlock`], [`T5Block`] ....
This is important because submodules that share weights (e.g., embedding layer) should not end up in different FSDP wrapped units.
Using this policy, wrapping happens for each block containing Multi-Head Attention followed by couple of MLP layers.
Expand Down
13 changes: 11 additions & 2 deletions src/transformers/trainer.py
Original file line number Diff line number Diff line change
Expand Up @@ -1377,18 +1377,24 @@ def _wrap_model(self, model, training=True, dataloader=None):
raise ImportError("Missing XLA FSDP related module; please make sure to use torch-xla >= 2.0.")
auto_wrap_policy = None
auto_wrapper_callable = None
default_transformer_cls_names_to_wrap = getattr(model, "_no_split_modules", None)
fsdp_transformer_layer_cls_to_wrap = self.args.fsdp_config.get(
"fsdp_transformer_layer_cls_to_wrap", default_transformer_cls_names_to_wrap
)

if self.args.fsdp_config["fsdp_min_num_params"] > 0:
auto_wrap_policy = functools.partial(
size_based_auto_wrap_policy, min_num_params=self.args.fsdp_config["fsdp_min_num_params"]
)
elif self.args.fsdp_config.get("fsdp_transformer_layer_cls_to_wrap", None) is not None:
elif fsdp_transformer_layer_cls_to_wrap is not None:
transformer_cls_to_wrap = set()
for layer_class in self.args.fsdp_config["fsdp_transformer_layer_cls_to_wrap"]:
for layer_class in fsdp_transformer_layer_cls_to_wrap:
transformer_cls = get_module_class_from_name(model, layer_class)
if transformer_cls is None:
raise Exception("Could not find the transformer layer class to wrap in the model.")
else:
transformer_cls_to_wrap.add(transformer_cls)

auto_wrap_policy = functools.partial(
transformer_auto_wrap_policy,
# Transformer layer class to wrap
Expand Down Expand Up @@ -1600,6 +1606,7 @@ def _inner_training_loop(
and self.sharded_ddp != ShardedDDPOption.SIMPLE
or is_sagemaker_mp_enabled()
or self.fsdp is not None
or self.is_fsdp_enabled
)

# We need to reset the scheduler, as its parameters may be different on subsequent calls
Expand Down Expand Up @@ -1631,6 +1638,8 @@ def _inner_training_loop(
use_accelerator_prepare = True if model is self.model else False

if delay_optimizer_creation:
if use_accelerator_prepare:
self.model = self.accelerator.prepare(self.model)
self.create_optimizer_and_scheduler(num_training_steps=max_steps)

# prepare using `accelerator` prepare
Expand Down
2 changes: 1 addition & 1 deletion src/transformers/training_args.py
Original file line number Diff line number Diff line change
Expand Up @@ -1567,14 +1567,14 @@ def __post_init__(self):
elif fsdp_option == FSDPOption.OFFLOAD:
os.environ["FSDP_OFFLOAD_PARAMS"] = "true"
elif fsdp_option == FSDPOption.AUTO_WRAP:
os.environ["FSDP_AUTO_WRAP_POLICY"] = FSDP_AUTO_WRAP_POLICY[0]
if self.fsdp_config["fsdp_min_num_params"] > 0:
os.environ["FSDP_MIN_NUM_PARAMS"] = str(self.fsdp_config["fsdp_min_num_params"])
os.environ["FSDP_AUTO_WRAP_POLICY"] = FSDP_AUTO_WRAP_POLICY[1]
elif self.fsdp_config.get("fsdp_transformer_layer_cls_to_wrap", None) is not None:
os.environ["FSDP_TRANSFORMER_CLS_TO_WRAP"] = ",".join(
self.fsdp_config["fsdp_transformer_layer_cls_to_wrap"]
)
os.environ["FSDP_AUTO_WRAP_POLICY"] = FSDP_AUTO_WRAP_POLICY[0]
prefetch_policy = self.fsdp_config.get("fsdp_backward_prefetch", "NO_PREFETCH")
os.environ["FSDP_BACKWARD_PREFETCH"] = prefetch_policy.upper()

Expand Down