-
Notifications
You must be signed in to change notification settings - Fork 5.5k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[SANA LoRA] sana lora training tests and misc. (#10296)
* sana lora training tests and misc. * remove push to hub * Update examples/dreambooth/train_dreambooth_lora_sana.py Co-authored-by: Aryan <[email protected]> --------- Co-authored-by: Aryan <[email protected]>
- Loading branch information
Showing
4 changed files
with
231 additions
and
24 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,206 @@ | ||
# coding=utf-8 | ||
# Copyright 2024 HuggingFace Inc. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import logging | ||
import os | ||
import sys | ||
import tempfile | ||
|
||
import safetensors | ||
|
||
|
||
sys.path.append("..") | ||
from test_examples_utils import ExamplesTestsAccelerate, run_command # noqa: E402 | ||
|
||
|
||
logging.basicConfig(level=logging.DEBUG) | ||
|
||
logger = logging.getLogger() | ||
stream_handler = logging.StreamHandler(sys.stdout) | ||
logger.addHandler(stream_handler) | ||
|
||
|
||
class DreamBoothLoRASANA(ExamplesTestsAccelerate): | ||
instance_data_dir = "docs/source/en/imgs" | ||
pretrained_model_name_or_path = "hf-internal-testing/tiny-sana-pipe" | ||
script_path = "examples/dreambooth/train_dreambooth_lora_sana.py" | ||
transformer_layer_type = "transformer_blocks.0.attn1.to_k" | ||
|
||
def test_dreambooth_lora_sana(self): | ||
with tempfile.TemporaryDirectory() as tmpdir: | ||
test_args = f""" | ||
{self.script_path} | ||
--pretrained_model_name_or_path {self.pretrained_model_name_or_path} | ||
--instance_data_dir {self.instance_data_dir} | ||
--resolution 32 | ||
--train_batch_size 1 | ||
--gradient_accumulation_steps 1 | ||
--max_train_steps 2 | ||
--learning_rate 5.0e-04 | ||
--scale_lr | ||
--lr_scheduler constant | ||
--lr_warmup_steps 0 | ||
--output_dir {tmpdir} | ||
--max_sequence_length 16 | ||
""".split() | ||
|
||
test_args.extend(["--instance_prompt", ""]) | ||
run_command(self._launch_args + test_args) | ||
# save_pretrained smoke test | ||
self.assertTrue(os.path.isfile(os.path.join(tmpdir, "pytorch_lora_weights.safetensors"))) | ||
|
||
# make sure the state_dict has the correct naming in the parameters. | ||
lora_state_dict = safetensors.torch.load_file(os.path.join(tmpdir, "pytorch_lora_weights.safetensors")) | ||
is_lora = all("lora" in k for k in lora_state_dict.keys()) | ||
self.assertTrue(is_lora) | ||
|
||
# when not training the text encoder, all the parameters in the state dict should start | ||
# with `"transformer"` in their names. | ||
starts_with_transformer = all(key.startswith("transformer") for key in lora_state_dict.keys()) | ||
self.assertTrue(starts_with_transformer) | ||
|
||
def test_dreambooth_lora_latent_caching(self): | ||
with tempfile.TemporaryDirectory() as tmpdir: | ||
test_args = f""" | ||
{self.script_path} | ||
--pretrained_model_name_or_path {self.pretrained_model_name_or_path} | ||
--instance_data_dir {self.instance_data_dir} | ||
--resolution 32 | ||
--train_batch_size 1 | ||
--gradient_accumulation_steps 1 | ||
--max_train_steps 2 | ||
--cache_latents | ||
--learning_rate 5.0e-04 | ||
--scale_lr | ||
--lr_scheduler constant | ||
--lr_warmup_steps 0 | ||
--output_dir {tmpdir} | ||
--max_sequence_length 16 | ||
""".split() | ||
|
||
test_args.extend(["--instance_prompt", ""]) | ||
run_command(self._launch_args + test_args) | ||
# save_pretrained smoke test | ||
self.assertTrue(os.path.isfile(os.path.join(tmpdir, "pytorch_lora_weights.safetensors"))) | ||
|
||
# make sure the state_dict has the correct naming in the parameters. | ||
lora_state_dict = safetensors.torch.load_file(os.path.join(tmpdir, "pytorch_lora_weights.safetensors")) | ||
is_lora = all("lora" in k for k in lora_state_dict.keys()) | ||
self.assertTrue(is_lora) | ||
|
||
# when not training the text encoder, all the parameters in the state dict should start | ||
# with `"transformer"` in their names. | ||
starts_with_transformer = all(key.startswith("transformer") for key in lora_state_dict.keys()) | ||
self.assertTrue(starts_with_transformer) | ||
|
||
def test_dreambooth_lora_layers(self): | ||
with tempfile.TemporaryDirectory() as tmpdir: | ||
test_args = f""" | ||
{self.script_path} | ||
--pretrained_model_name_or_path {self.pretrained_model_name_or_path} | ||
--instance_data_dir {self.instance_data_dir} | ||
--resolution 32 | ||
--train_batch_size 1 | ||
--gradient_accumulation_steps 1 | ||
--max_train_steps 2 | ||
--cache_latents | ||
--learning_rate 5.0e-04 | ||
--scale_lr | ||
--lora_layers {self.transformer_layer_type} | ||
--lr_scheduler constant | ||
--lr_warmup_steps 0 | ||
--output_dir {tmpdir} | ||
--max_sequence_length 16 | ||
""".split() | ||
|
||
test_args.extend(["--instance_prompt", ""]) | ||
run_command(self._launch_args + test_args) | ||
# save_pretrained smoke test | ||
self.assertTrue(os.path.isfile(os.path.join(tmpdir, "pytorch_lora_weights.safetensors"))) | ||
|
||
# make sure the state_dict has the correct naming in the parameters. | ||
lora_state_dict = safetensors.torch.load_file(os.path.join(tmpdir, "pytorch_lora_weights.safetensors")) | ||
is_lora = all("lora" in k for k in lora_state_dict.keys()) | ||
self.assertTrue(is_lora) | ||
|
||
# when not training the text encoder, all the parameters in the state dict should start | ||
# with `"transformer"` in their names. In this test, we only params of | ||
# `self.transformer_layer_type` should be in the state dict. | ||
starts_with_transformer = all(self.transformer_layer_type in key for key in lora_state_dict) | ||
self.assertTrue(starts_with_transformer) | ||
|
||
def test_dreambooth_lora_sana_checkpointing_checkpoints_total_limit(self): | ||
with tempfile.TemporaryDirectory() as tmpdir: | ||
test_args = f""" | ||
{self.script_path} | ||
--pretrained_model_name_or_path={self.pretrained_model_name_or_path} | ||
--instance_data_dir={self.instance_data_dir} | ||
--output_dir={tmpdir} | ||
--resolution=32 | ||
--train_batch_size=1 | ||
--gradient_accumulation_steps=1 | ||
--max_train_steps=6 | ||
--checkpoints_total_limit=2 | ||
--checkpointing_steps=2 | ||
--max_sequence_length 16 | ||
""".split() | ||
|
||
test_args.extend(["--instance_prompt", ""]) | ||
run_command(self._launch_args + test_args) | ||
|
||
self.assertEqual( | ||
{x for x in os.listdir(tmpdir) if "checkpoint" in x}, | ||
{"checkpoint-4", "checkpoint-6"}, | ||
) | ||
|
||
def test_dreambooth_lora_sana_checkpointing_checkpoints_total_limit_removes_multiple_checkpoints(self): | ||
with tempfile.TemporaryDirectory() as tmpdir: | ||
test_args = f""" | ||
{self.script_path} | ||
--pretrained_model_name_or_path={self.pretrained_model_name_or_path} | ||
--instance_data_dir={self.instance_data_dir} | ||
--output_dir={tmpdir} | ||
--resolution=32 | ||
--train_batch_size=1 | ||
--gradient_accumulation_steps=1 | ||
--max_train_steps=4 | ||
--checkpointing_steps=2 | ||
--max_sequence_length 166 | ||
""".split() | ||
|
||
test_args.extend(["--instance_prompt", ""]) | ||
run_command(self._launch_args + test_args) | ||
|
||
self.assertEqual({x for x in os.listdir(tmpdir) if "checkpoint" in x}, {"checkpoint-2", "checkpoint-4"}) | ||
|
||
resume_run_args = f""" | ||
{self.script_path} | ||
--pretrained_model_name_or_path={self.pretrained_model_name_or_path} | ||
--instance_data_dir={self.instance_data_dir} | ||
--output_dir={tmpdir} | ||
--resolution=32 | ||
--train_batch_size=1 | ||
--gradient_accumulation_steps=1 | ||
--max_train_steps=8 | ||
--checkpointing_steps=2 | ||
--resume_from_checkpoint=checkpoint-4 | ||
--checkpoints_total_limit=2 | ||
--max_sequence_length 16 | ||
""".split() | ||
|
||
resume_run_args.extend(["--instance_prompt", ""]) | ||
run_command(self._launch_args + resume_run_args) | ||
|
||
self.assertEqual({x for x in os.listdir(tmpdir) if "checkpoint" in x}, {"checkpoint-6", "checkpoint-8"}) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters