Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fixes to JC documentation #186

Open
wants to merge 1 commit into
base: devel
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -6,25 +6,25 @@

The Johnson-Cook plasticity model has the following form
\begin{equation}
\sigma = \sigma_0\left(A+B\left(\frac{\ep}{\ep0}\right)^n\right)\left(1+C\text{ln}\left(\frac{\epdot}{\epdot0}\right)\right)\left(1-\left(\frac{T-T_0}{T_m-T_0}\right)^m\right)
\sigma = \sigma_0\left(A+B\left(\frac{\ep}{\varepsilon_0^p}\right)^n\right)\left(1+C\text{ln}\left(\frac{\epdot}{\dot\varepsilon_0^p}\right)\right)\left(1-\left(\frac{T-T_0}{T_m-T_0}\right)^m\right)
\end{equation}

Where $\sigma_0$ is the unperturbed yield stress, $\ep0$ is the reference plastic strain, $\epdot0$ is the reference plastic strain rate, $T_m$ is the melting temperature, and $T_0$ is the reference temperature.
Where $\sigma_0$ is the unperturbed yield stress, $\varepsilon_0^p$ is the reference plastic strain, $\dot\varepsilon_0^p$ is the reference plastic strain rate, $T_m$ is the melting temperature, and $T_0$ is the reference temperature.
$A$,$B$,and $C$ are parameters of the Johnson-Cook model.

When put into a variational framework, the Johnson-Cook model defines the following plastic energy
\begin{equation}
\psi_p = \left[\left(1-Q\right)g_p \sigma_0 \ep \left(A\ep + B\ep0\left(\frac{\ep}{\ep0}\right)^{n+1}\frac{1}{n+1}\right)\right]f(T),\\
\psi_p^* = \left[Q \sigma_0\left(A+B\ep0\left(\frac{\ep}{\ep0}\right)^n\right)+\left(A+B\frac{\ep}{\ep0}\right)\left(C\text{ln}\left(\frac{\epdot}{\epdot0}\right)-C\right)\right]f(T),\\
f(T) = \left(\frac{T-T_0}{T_m-T_00}\right)
\psi_p = \left[\left(1-Q\right)g_p \sigma_0 \ep \left(A\ep + B\varepsilon_0^p\left(\frac{\ep}{\varepsilon_0^p}\right)^{n+1}\frac{1}{n+1}\right)\right]f(T),\\
\psi_p^* = \left[Q \sigma_0\left(A+B\varepsilon_0^p\left(\frac{\ep}{\varepsilon_0^p}\right)^n\right)+\left(A+B{\left(\frac{\ep}{\varepsilon_0^p}\right)^n}\right)\left(C\text{ln}\left(\frac{\epdot}{\dot\varepsilon_0^p}\right)-C\right)\right]f(T),\\
f(T) = \left(\frac{T-T_0}{T_m-T_0}\right)
\end{equation}

Additionally, the energy is split into energetic and dissipative portions using the Taylor-Quinney factor, $Q$.\\
The flow stresses are defined as the following

\begin{equation}
Y^{\text{eq}}=\left[\left(1-Q\right)\sigma_0\left(A+B\frac{\ep}{\ep0}\right)^n\right]f(T),\\
Y^{\text{vis}}=\left[Q\sigma_0\left(A+B\left(\frac{\ep}{\ep0}\right)^n\right)+\left(A+B\frac{\ep}{\ep0}\right)\left(C\text{ln}\left(\frac{\epdot}{\epdot0}\right)\right)\right]f(T)
Y^{\text{eq}}=\left[\left(1-Q\right)\sigma_0\left(A+B\frac{\ep}{\varepsilon_0^p}\right)^n\right]f(T),\\
Y^{\text{vis}}=\left[Q\sigma_0\left(A+B\left(\frac{\ep}{\varepsilon_0^p}\right)^n\right)+\left(A+B\frac{\ep}{\varepsilon_0^p}\right)\left(C\text{ln}\left(\frac{\epdot}{\dot\varepsilon_0^p}\right)\right)\right]f(T)
\end{equation}


Expand Down
1 change: 1 addition & 0 deletions doc/content/theory/constitutive_models.md
Original file line number Diff line number Diff line change
Expand Up @@ -33,6 +33,7 @@ We support both small deformation and large deformation. Several hyperelastic mo

- [Power-law hardening](PowerLawHardening.md)
- [Arrhenius-law hardening](ArrheniusLawHardening.md)
- [Johnson-Cook Hardening](JohnsonCookHardening.md)

## Phase-field fracture models

Expand Down
Loading