Skip to content

hn18001/localturk

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

20 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

localturk

Local Turk implements Amazon's Mechanical Turk API on your own machine.

It's handy if you want to:

  1. Develop a Mechanical Turk template
  2. Do some repetitive tasks on your own, without involving Turkers.

You could use it, for instance, to generate test and training data for a Machine Learning algorithm.

Quick Start

Install:

npm install -g localturk

Run:

cd localturk/sample
localturk --static_dir . transcribe.html tasks.csv outputs.csv

Then visit http://localhost:4321/ to start Turking.

Templates and Tasks

Using Local Turk is just like using Amazon's Mechanical Turk. You create:

  1. An HTML template file with a <form>
  2. A CSV file of tasks

For example, say you wanted to record whether some images contained a red ball. You would make a CSV file containing the URLs for each image:

image_url
http://example.com/image_with_red_ball.png
http://example.com/image_without_red_ball.png

Then you'd make an HTML template for the task:

<img src="${image_url}" />
<input type=radio name=has_button value="yes" /> Has a red ball<br/>
<input type=radio name=has_button value="no" /> Does not have a red ball<br/>

Finally, you'd start up the Local Turk server:

$ localturk path/to/template.html path/to/tasks.csv path/to/output.csv

Now you can visit http://localhost:4321/ to complete each task. When you're done, the output.csv file will contain

image_url,has_button
http://example.com/image_with_red_ball.png,yes
http://example.com/image_without_red_ball.png,no

Image Classification

The use case described above (classifying images) is an extremely common one.

To expedite this, localturk provides a separate script for doing image classification. The example above could be written as:

classify-images --labels 'Has a red ball,Does not have a red ball' *.png

This will bring up a web server with a UI for assigning one of those two labels to each image on your local file system. The results will go in output.csv.

For more details, run classify-images --help.

About

Mechanical Turk on your own machine.

Resources

Stars

Watchers

Forks

Packages

No packages published

Languages

  • JavaScript 94.0%
  • HTML 6.0%