-
Notifications
You must be signed in to change notification settings - Fork 551
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
feat: fix high memory issues in Gaussian copula fitting for high card…
…inality discrete columns based on frequency encoding. (#233)
- Loading branch information
Showing
2 changed files
with
116 additions
and
1 deletion.
There are no files selected for viewing
112 changes: 112 additions & 0 deletions
112
sdgx/models/components/optimize/sdv_copulas/data_transformer.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,112 @@ | ||
import numpy as np | ||
import pandas as pd | ||
|
||
from sdgx.models.components.sdv_ctgan.data_transformer import ( | ||
ColumnTransformInfo, | ||
DataTransformer, | ||
SpanInfo, | ||
) | ||
from sdgx.models.components.sdv_rdt.transformers import ClusterBasedNormalizer | ||
from sdgx.models.components.sdv_rdt.transformers.categorical import FrequencyEncoder | ||
|
||
# TODO(Enhance) - Use different type of Encoder for discrete, like ordered columns, high cardinality columns... | ||
|
||
|
||
class StatisticDataTransformer(DataTransformer): | ||
"""Data Transformer for statistical models like Gaussian Copula.""" | ||
|
||
def _fit_continuous(self, data): | ||
"""Train ClusterBasedNormalizer for continuous columns.""" | ||
column_name = data.columns[0] | ||
gm = ClusterBasedNormalizer(model_missing_values=True, max_clusters=1) | ||
gm.fit(data, column_name) | ||
|
||
return ColumnTransformInfo( | ||
column_name=column_name, | ||
column_type="continuous", | ||
transform=gm, | ||
output_info=[SpanInfo(1, "tanh")], | ||
output_dimensions=1, | ||
) | ||
|
||
def _transform_continuous(self, column_transform_info, data): | ||
"""Transform continuous column.""" | ||
gm = column_transform_info.transform | ||
transformed = gm.transform(data) | ||
return transformed[f"{data.columns[0]}.normalized"].to_numpy().reshape(-1, 1) | ||
|
||
def _inverse_transform_continuous(self, column_transform_info, column_data, sigmas, st): | ||
"""Inverse transform continuous column.""" | ||
gm = column_transform_info.transform | ||
column_name = column_transform_info.column_name | ||
|
||
# Create dataframe | ||
data = pd.DataFrame( | ||
{ | ||
f"{column_name}.normalized": column_data.flatten(), | ||
f"{column_name}.component": [0] * len(column_data), # virtual component | ||
} | ||
) | ||
|
||
if sigmas is not None: | ||
data[f"{column_name}.normalized"] = np.random.normal( | ||
data[f"{column_name}.normalized"], sigmas[st] | ||
) | ||
|
||
# Reverse data | ||
result = gm.reverse_transform(data) | ||
|
||
# Ensure correct column | ||
if column_name in result.columns: | ||
return result[column_name] | ||
else: | ||
# Try first column | ||
return result.iloc[:, 0] | ||
|
||
def _fit_discrete(self, data): | ||
"""Fit frequency encoder for discrete column.""" | ||
column_name = data.columns[0] | ||
freq_encoder = FrequencyEncoder() | ||
freq_encoder.fit(data, column_name) | ||
|
||
# Save original unique values for inverse transform | ||
self._discrete_values = ( | ||
{column_name: data[column_name].unique().tolist()} | ||
if not hasattr(self, "_discrete_values") | ||
else {**self._discrete_values, column_name: data[column_name].unique().tolist()} | ||
) | ||
|
||
return ColumnTransformInfo( | ||
column_name=column_name, | ||
column_type="discrete", | ||
transform=freq_encoder, | ||
output_info=[SpanInfo(1, "tanh")], | ||
output_dimensions=1, | ||
) | ||
|
||
def _transform_discrete(self, column_transform_info, data): | ||
"""Transform discrete column using frequency encoding.""" | ||
freq_encoder = column_transform_info.transform | ||
return freq_encoder.transform(data).to_numpy().reshape(-1, 1) | ||
|
||
def _inverse_transform_discrete(self, column_transform_info, column_data): | ||
"""Inverse transform discrete column from frequency encoding.""" | ||
freq_encoder = column_transform_info.transform | ||
column_name = column_transform_info.column_name | ||
|
||
# Use frequency encoder to reverse transform | ||
data = pd.DataFrame({column_name: column_data.flatten()}) | ||
|
||
# Get all possible category values | ||
categories = freq_encoder.starts["category"].values | ||
|
||
# Find the closest category for each frequency value | ||
result = [] | ||
for val in data[column_name]: | ||
# The index of the closest start point | ||
starts = freq_encoder.starts.index.values | ||
idx = np.abs(starts - val).argmin() | ||
# Set which category does the closest start point belong to | ||
result.append(categories[idx]) | ||
|
||
return pd.Series(result, index=data.index, dtype=freq_encoder.dtype) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters