Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Chore/116 refactor indexes Query and Search #128

Merged
merged 4 commits into from
Sep 13, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 2 additions & 3 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -71,10 +71,9 @@ func main() {
docs, _ := loader.NewPDFToTextLoader("./kb").WithTextSplitter(textsplitter.NewRecursiveCharacterTextSplitter(2000, 200)).Load(context.Background())
openaiEmbedder := openaiembedder.New(openaiembedder.AdaEmbeddingV2)
simplevectorindex.New("db", ".", openaiEmbedder).LoadFromDocuments(context.Background(), docs)
similarities, _ := simplevectorindex.New("db", ".", openaiEmbedder).SimilaritySearch(context.Background(), query, indexoption.WithTopK(3))
qapipeline.New(openai.NewChat().WithVerbose(true)).Run(context.Background(), query, similarities.ToDocuments())
results, _ := simplevectorindex.New("db", ".", openaiEmbedder).Query(context.Background(), query, indexoption.WithTopK(3))
qapipeline.New(openai.NewChat().WithVerbose(true)).Run(context.Background(), query, results.ToDocuments())
}

```

This is the _famous_ 6-lines **lingoose** knowledge base chatbot. 🤖
Expand Down
2 changes: 1 addition & 1 deletion examples/embeddings/knowledge_base/main.go
Original file line number Diff line number Diff line change
Expand Up @@ -49,7 +49,7 @@ func main() {
break
}

similarities, err := docsVectorIndex.SimilaritySearch(context.Background(), query, indexoption.WithTopK(3))
similarities, err := docsVectorIndex.Query(context.Background(), query, indexoption.WithTopK(3))
if err != nil {
panic(err)
}
Expand Down
2 changes: 1 addition & 1 deletion examples/embeddings/pinecone/main.go
Original file line number Diff line number Diff line change
Expand Up @@ -47,7 +47,7 @@ func main() {
}

query := "What is the purpose of the NATO Alliance?"
similarities, err := pineconeIndex.SimilaritySearch(
similarities, err := pineconeIndex.Query(
context.Background(),
query,
indexoption.WithTopK(3),
Expand Down
2 changes: 1 addition & 1 deletion examples/embeddings/qdrant/main.go
Original file line number Diff line number Diff line change
Expand Up @@ -45,7 +45,7 @@ func main() {
}

query := "What is the purpose of the NATO Alliance?"
similarities, err := qdrantIndex.SimilaritySearch(
similarities, err := qdrantIndex.Query(
context.Background(),
query,
indexoption.WithTopK(3),
Expand Down
2 changes: 1 addition & 1 deletion examples/embeddings/simpleVector/main.go
Original file line number Diff line number Diff line change
Expand Up @@ -31,7 +31,7 @@ func main() {
}

query := "Describe within a paragraph what is the purpose of the NATO Alliance."
similarities, err := docsVectorIndex.SimilaritySearch(
similarities, err := docsVectorIndex.Query(
context.Background(),
query,
indexoption.WithTopK(3),
Expand Down
4 changes: 2 additions & 2 deletions examples/embeddings/simplekb/main.go
Original file line number Diff line number Diff line change
Expand Up @@ -17,6 +17,6 @@ func main() {
docs, _ := loader.NewPDFToTextLoader("./kb").WithTextSplitter(textsplitter.NewRecursiveCharacterTextSplitter(2000, 200)).Load(context.Background())
openaiEmbedder := openaiembedder.New(openaiembedder.AdaEmbeddingV2)
simplevectorindex.New("db", ".", openaiEmbedder).LoadFromDocuments(context.Background(), docs)
similarities, _ := simplevectorindex.New("db", ".", openaiEmbedder).SimilaritySearch(context.Background(), query, indexoption.WithTopK(3))
qapipeline.New(openai.NewChat().WithVerbose(true)).Run(context.Background(), query, similarities.ToDocuments())
results, _ := simplevectorindex.New("db", ".", openaiEmbedder).Query(context.Background(), query, indexoption.WithTopK(3))
qapipeline.New(openai.NewChat().WithVerbose(true)).Run(context.Background(), query, results.ToDocuments())
}
8 changes: 6 additions & 2 deletions index/index.go
Original file line number Diff line number Diff line change
Expand Up @@ -18,11 +18,15 @@ const (
DefaultKeyContent = "content"
)

type SearchResult struct {
type Data struct {
ID string
Values []float64
Metadata types.Meta
Score float64
}

type SearchResult struct {
Data
Score float64
}

func (s *SearchResult) Content() string {
Expand Down
48 changes: 39 additions & 9 deletions index/pinecone/pinecone.go
Original file line number Diff line number Diff line change
Expand Up @@ -126,7 +126,7 @@ func (p *Index) IsEmpty(ctx context.Context) (bool, error) {

}

func (p *Index) SimilaritySearch(ctx context.Context, query string, opts ...option.Option) (index.SearchResults, error) {
func (p *Index) Search(ctx context.Context, values []float64, opts ...option.Option) (index.SearchResults, error) {

pineconeOptions := &option.Options{
TopK: defaultTopK,
Expand All @@ -140,7 +140,7 @@ func (p *Index) SimilaritySearch(ctx context.Context, query string, opts ...opti
pineconeOptions.Filter = map[string]string{}
}

matches, err := p.similaritySearch(ctx, query, pineconeOptions)
matches, err := p.similaritySearch(ctx, values, pineconeOptions)
if err != nil {
return nil, fmt.Errorf("%s: %w", index.ErrInternal, err)
}
Expand All @@ -150,18 +150,46 @@ func (p *Index) SimilaritySearch(ctx context.Context, query string, opts ...opti
return index.FilterSearchResults(searchResults, pineconeOptions.TopK), nil
}

func (p *Index) similaritySearch(ctx context.Context, query string, opts *option.Options) ([]pineconeresponse.QueryMatch, error) {
func (p *Index) Query(ctx context.Context, query string, opts ...option.Option) (index.SearchResults, error) {

err := p.getProjectID(ctx)
pineconeOptions := &option.Options{
TopK: defaultTopK,
}

for _, opt := range opts {
opt(pineconeOptions)
}

if pineconeOptions.Filter == nil {
pineconeOptions.Filter = map[string]string{}
}

matches, err := p.query(ctx, query, pineconeOptions)
if err != nil {
return nil, fmt.Errorf("%s: %w", index.ErrInternal, err)
}

searchResults := buildSearchResultsFromPineconeMatches(matches, p.includeContent)

return index.FilterSearchResults(searchResults, pineconeOptions.TopK), nil
}

func (p *Index) query(ctx context.Context, query string, opts *option.Options) ([]pineconeresponse.QueryMatch, error) {

embeddings, err := p.embedder.Embed(ctx, []string{query})
if err != nil {
return nil, err
}

return p.similaritySearch(ctx, embeddings[0], opts)
}

func (p *Index) similaritySearch(ctx context.Context, values []float64, opts *option.Options) ([]pineconeresponse.QueryMatch, error) {
err := p.getProjectID(ctx)
if err != nil {
return nil, fmt.Errorf("%s: %w", index.ErrInternal, err)
}

includeMetadata := true
res := &pineconeresponse.VectorQuery{}
err = p.pineconeClient.VectorQuery(
Expand All @@ -170,7 +198,7 @@ func (p *Index) similaritySearch(ctx context.Context, query string, opts *option
IndexName: p.indexName,
ProjectID: *p.projectID,
TopK: int32(opts.TopK),
Vector: embeddings[0],
Vector: values,
IncludeMetadata: &includeMetadata,
Namespace: &p.namespace,
Filter: opts.Filter.(map[string]string),
Expand Down Expand Up @@ -374,10 +402,12 @@ func buildSearchResultsFromPineconeMatches(matches []pineconeresponse.QueryMatch
}

searchResults[i] = index.SearchResult{
ID: id,
Metadata: metadata,
Values: match.Values,
Score: score,
Data: index.Data{
ID: id,
Metadata: metadata,
Values: match.Values,
},
Score: score,
}
}

Expand Down
51 changes: 38 additions & 13 deletions index/qdrant/qdrant.go
Original file line number Diff line number Diff line change
Expand Up @@ -115,8 +115,7 @@ func (p *Index) IsEmpty(ctx context.Context) (bool, error) {

}

func (q *Index) SimilaritySearch(ctx context.Context, query string, opts ...option.Option) (index.SearchResults, error) {

func (q *Index) Search(ctx context.Context, values []float64, opts ...option.Option) (index.SearchResults, error) {
qdrantOptions := &option.Options{
TopK: defaultTopK,
}
Expand All @@ -125,7 +124,7 @@ func (q *Index) SimilaritySearch(ctx context.Context, query string, opts ...opti
opt(qdrantOptions)
}

matches, err := q.similaritySearch(ctx, query, qdrantOptions)
matches, err := q.similaritySearch(ctx, values, qdrantOptions)
if err != nil {
return nil, fmt.Errorf("%s: %w", index.ErrInternal, err)
}
Expand All @@ -135,25 +134,40 @@ func (q *Index) SimilaritySearch(ctx context.Context, query string, opts ...opti
return index.FilterSearchResults(searchResults, qdrantOptions.TopK), nil
}

func (p *Index) similaritySearch(ctx context.Context, query string, opts *option.Options) ([]qdrantresponse.PointSearchResult, error) {
func (q *Index) Query(ctx context.Context, query string, opts ...option.Option) (index.SearchResults, error) {

qdrantOptions := &option.Options{
TopK: defaultTopK,
}

for _, opt := range opts {
opt(qdrantOptions)
}

embeddings, err := p.embedder.Embed(ctx, []string{query})
matches, err := q.query(ctx, query, qdrantOptions)
if err != nil {
return nil, err
return nil, fmt.Errorf("%s: %w", index.ErrInternal, err)
}

searchResults := buildSearchResultsFromQdrantMatches(matches, q.includeContent)

return index.FilterSearchResults(searchResults, qdrantOptions.TopK), nil
}

func (q *Index) similaritySearch(ctx context.Context, values []float64, opts *option.Options) ([]qdrantresponse.PointSearchResult, error) {

if opts.Filter == nil {
opts.Filter = qdrantrequest.Filter{}
}

includeMetadata := true
res := &qdrantresponse.PointSearch{}
err = p.qdrantClient.PointSearch(
err := q.qdrantClient.PointSearch(
ctx,
&qdrantrequest.PointSearch{
CollectionName: p.collectionName,
CollectionName: q.collectionName,
Limit: opts.TopK,
Vector: embeddings[0],
Vector: values,
WithPayload: &includeMetadata,
Filter: opts.Filter.(qdrantrequest.Filter),
},
Expand All @@ -166,6 +180,15 @@ func (p *Index) similaritySearch(ctx context.Context, query string, opts *option
return res.Result, nil
}

func (q *Index) query(ctx context.Context, query string, opts *option.Options) ([]qdrantresponse.PointSearchResult, error) {
embeddings, err := q.embedder.Embed(ctx, []string{query})
if err != nil {
return nil, err
}

return q.similaritySearch(ctx, embeddings[0], opts)
}

func (q *Index) createCollectionIfRequired(ctx context.Context) error {

if q.createCollection == nil {
Expand Down Expand Up @@ -299,10 +322,12 @@ func buildSearchResultsFromQdrantMatches(matches []qdrantresponse.PointSearchRes
}

searchResults[i] = index.SearchResult{
ID: match.ID,
Metadata: metadata,
Values: match.Vector,
Score: match.Score,
Data: index.Data{
ID: match.ID,
Metadata: metadata,
Values: match.Vector,
},
Score: match.Score,
}
}

Expand Down
46 changes: 37 additions & 9 deletions index/simpleVectorIndex/simpleVectorIndex.go
Original file line number Diff line number Diff line change
Expand Up @@ -140,7 +140,24 @@ func (s *Index) IsEmpty() (bool, error) {
return len(s.data) == 0, nil
}

func (s *Index) SimilaritySearch(ctx context.Context, query string, opts ...option.Option) (index.SearchResults, error) {
func (s *Index) Search(ctx context.Context, values []float64, opts ...option.Option) (index.SearchResults, error) {
sviOptions := &option.Options{
TopK: defaultTopK,
}

for _, opt := range opts {
opt(sviOptions)
}

err := s.load()
if err != nil {
return nil, fmt.Errorf("%s: %w", index.ErrInternal, err)
}

return s.similaritySearch(ctx, values, sviOptions)
}

func (s *Index) Query(ctx context.Context, query string, opts ...option.Option) (index.SearchResults, error) {

sviOptions := &option.Options{
TopK: defaultTopK,
Expand All @@ -160,24 +177,35 @@ func (s *Index) SimilaritySearch(ctx context.Context, query string, opts ...opti
return nil, fmt.Errorf("%s: %w", index.ErrInternal, err)
}

scores := s.cosineSimilarityBatch(embeddings[0])
return s.similaritySearch(ctx, embeddings[0], sviOptions)
}

func (s *Index) similaritySearch(
ctx context.Context,
embedding embedder.Embedding,
opts *option.Options,
) (index.SearchResults, error) {

scores := s.cosineSimilarityBatch(embedding)

searchResults := make([]index.SearchResult, len(scores))

for i, score := range scores {
searchResults[i] = index.SearchResult{
ID: s.data[i].ID,
Values: s.data[i].Values,
Metadata: s.data[i].Metadata,
Score: score,
Data: index.Data{
ID: s.data[i].ID,
Values: s.data[i].Values,
Metadata: s.data[i].Metadata,
},
Score: score,
}
}

if sviOptions.Filter != nil {
searchResults = sviOptions.Filter.(SimpleVectorIndexFilterFn)(searchResults)
if opts.Filter != nil {
searchResults = opts.Filter.(SimpleVectorIndexFilterFn)(searchResults)
}

return index.FilterSearchResults(searchResults, sviOptions.TopK), nil
return index.FilterSearchResults(searchResults, opts.TopK), nil
}

func (s *Index) cosineSimilarity(a embedder.Embedding, b embedder.Embedding) float64 {
Expand Down