Skip to content

Commit

Permalink
[mlir][sparse] Add verification for explicit/implicit value (#90111)
Browse files Browse the repository at this point in the history
1. Verify that the type of explicit/implicit values should be the same
as the tensor element type.
2. Verify that implicit value could only be zero.
3. Verify that explicit/implicit values should be numeric.
4. Fix the type change issue caused by SparseTensorType(enc).
  • Loading branch information
yinying-lisa-li authored May 8, 2024
1 parent d4cf20c commit 83f3b1c
Show file tree
Hide file tree
Showing 5 changed files with 169 additions and 47 deletions.
13 changes: 13 additions & 0 deletions mlir/include/mlir/Dialect/SparseTensor/IR/SparseTensor.h
Original file line number Diff line number Diff line change
Expand Up @@ -41,6 +41,19 @@ using Level = uint64_t;
/// including the value `ShapedType::kDynamic` (for shapes).
using Size = int64_t;

/// A simple structure that encodes a range of levels in the sparse tensors
/// that forms a COO segment.
struct COOSegment {
std::pair<Level, Level> lvlRange; // [low, high)
bool isSoA;

bool isAoS() const { return !isSoA; }
bool isSegmentStart(Level l) const { return l == lvlRange.first; }
bool inSegment(Level l) const {
return l >= lvlRange.first && l < lvlRange.second;
}
};

} // namespace sparse_tensor
} // namespace mlir

Expand Down
15 changes: 15 additions & 0 deletions mlir/include/mlir/Dialect/SparseTensor/IR/SparseTensorAttrDefs.td
Original file line number Diff line number Diff line change
Expand Up @@ -502,9 +502,24 @@ def SparseTensorEncodingAttr : SparseTensor_Attr<"SparseTensorEncoding",
//
// Helper function to translate between level/dimension space.
//

SmallVector<int64_t> translateShape(::mlir::ArrayRef<int64_t> srcShape, ::mlir::sparse_tensor::CrdTransDirectionKind) const;
ValueRange translateCrds(::mlir::OpBuilder &builder, ::mlir::Location loc, ::mlir::ValueRange crds, ::mlir::sparse_tensor::CrdTransDirectionKind) const;

//
// COO methods.
//

/// Returns the starting level of this sparse tensor type for a
/// trailing COO region that spans **at least** two levels. If
/// no such COO region is found, then returns the level-rank.
///
/// DEPRECATED: use getCOOSegment instead;
Level getAoSCOOStart() const;

/// Returns a list of COO segments in the sparse tensor types.
SmallVector<COOSegment> getCOOSegments() const;

//
// Printing methods.
//
Expand Down
25 changes: 4 additions & 21 deletions mlir/include/mlir/Dialect/SparseTensor/IR/SparseTensorType.h
Original file line number Diff line number Diff line change
Expand Up @@ -18,19 +18,6 @@
namespace mlir {
namespace sparse_tensor {

/// A simple structure that encodes a range of levels in the sparse tensors that
/// forms a COO segment.
struct COOSegment {
std::pair<Level, Level> lvlRange; // [low, high)
bool isSoA;

bool isAoS() const { return !isSoA; }
bool isSegmentStart(Level l) const { return l == lvlRange.first; }
bool inSegment(Level l) const {
return l >= lvlRange.first && l < lvlRange.second;
}
};

//===----------------------------------------------------------------------===//
/// A wrapper around `RankedTensorType`, which has three goals:
///
Expand Down Expand Up @@ -73,12 +60,6 @@ class SparseTensorType {
: SparseTensorType(
RankedTensorType::get(stp.getShape(), stp.getElementType(), enc)) {}

// TODO: remove?
SparseTensorType(SparseTensorEncodingAttr enc)
: SparseTensorType(RankedTensorType::get(
SmallVector<Size>(enc.getDimRank(), ShapedType::kDynamic),
Float32Type::get(enc.getContext()), enc)) {}

SparseTensorType &operator=(const SparseTensorType &) = delete;
SparseTensorType(const SparseTensorType &) = default;

Expand Down Expand Up @@ -369,13 +350,15 @@ class SparseTensorType {
/// no such COO region is found, then returns the level-rank.
///
/// DEPRECATED: use getCOOSegment instead;
Level getAoSCOOStart() const;
Level getAoSCOOStart() const { return getEncoding().getAoSCOOStart(); };

/// Returns [un]ordered COO type for this sparse tensor type.
RankedTensorType getCOOType(bool ordered) const;

/// Returns a list of COO segments in the sparse tensor types.
SmallVector<COOSegment> getCOOSegments() const;
SmallVector<COOSegment> getCOOSegments() const {
return getEncoding().getCOOSegments();
}

private:
// These two must be const, to ensure coherence of the memoized fields.
Expand Down
78 changes: 52 additions & 26 deletions mlir/lib/Dialect/SparseTensor/IR/SparseTensorDialect.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -104,7 +104,7 @@ void StorageLayout::foreachField(
callback) const {
const auto lvlTypes = enc.getLvlTypes();
const Level lvlRank = enc.getLvlRank();
SmallVector<COOSegment> cooSegs = SparseTensorType(enc).getCOOSegments();
SmallVector<COOSegment> cooSegs = enc.getCOOSegments();
FieldIndex fieldIdx = kDataFieldStartingIdx;

ArrayRef cooSegsRef = cooSegs;
Expand Down Expand Up @@ -211,7 +211,7 @@ StorageLayout::getFieldIndexAndStride(SparseTensorFieldKind kind,
unsigned stride = 1;
if (kind == SparseTensorFieldKind::CrdMemRef) {
assert(lvl.has_value());
const Level cooStart = SparseTensorType(enc).getAoSCOOStart();
const Level cooStart = enc.getAoSCOOStart();
const Level lvlRank = enc.getLvlRank();
if (lvl.value() >= cooStart && lvl.value() < lvlRank) {
lvl = cooStart;
Expand Down Expand Up @@ -912,46 +912,53 @@ LogicalResult SparseTensorEncodingAttr::verifyEncoding(
return emitError()
<< "dimension-rank mismatch between encoding and tensor shape: "
<< getDimRank() << " != " << dimRank;
if (auto expVal = getExplicitVal()) {
Type attrType = llvm::dyn_cast<TypedAttr>(expVal).getType();
if (attrType != elementType) {
return emitError() << "explicit value type mismatch between encoding and "
<< "tensor element type: " << attrType
<< " != " << elementType;
}
}
if (auto impVal = getImplicitVal()) {
Type attrType = llvm::dyn_cast<TypedAttr>(impVal).getType();
if (attrType != elementType) {
return emitError() << "implicit value type mismatch between encoding and "
<< "tensor element type: " << attrType
<< " != " << elementType;
}
// Currently, we only support zero as the implicit value.
auto impFVal = llvm::dyn_cast<FloatAttr>(impVal);
auto impIntVal = llvm::dyn_cast<IntegerAttr>(impVal);
auto impComplexVal = llvm::dyn_cast<complex::NumberAttr>(impVal);
if ((impFVal && impFVal.getValue().isNonZero()) ||
(impIntVal && !impIntVal.getValue().isZero()) ||
(impComplexVal && (impComplexVal.getImag().isNonZero() ||
impComplexVal.getReal().isNonZero()))) {
return emitError() << "implicit value must be zero";
}
}
return success();
}

//===----------------------------------------------------------------------===//
// SparseTensorType Methods.
//===----------------------------------------------------------------------===//

bool mlir::sparse_tensor::SparseTensorType::isCOOType(Level startLvl,
bool isUnique) const {
if (!hasEncoding())
return false;
if (!isCompressedLvl(startLvl) && !isLooseCompressedLvl(startLvl))
return false;
for (Level l = startLvl + 1; l < lvlRank; ++l)
if (!isSingletonLvl(l))
return false;
// If isUnique is true, then make sure that the last level is unique,
// that is, when lvlRank == 1, the only compressed level is unique,
// and when lvlRank > 1, the last singleton is unique.
return !isUnique || isUniqueLvl(lvlRank - 1);
}

Level mlir::sparse_tensor::SparseTensorType::getAoSCOOStart() const {
Level mlir::sparse_tensor::SparseTensorEncodingAttr::getAoSCOOStart() const {
SmallVector<COOSegment> coo = getCOOSegments();
assert(coo.size() == 1 || coo.empty());
if (!coo.empty() && coo.front().isAoS()) {
return coo.front().lvlRange.first;
}
return lvlRank;
return getLvlRank();
}

SmallVector<COOSegment>
mlir::sparse_tensor::SparseTensorType::getCOOSegments() const {
mlir::sparse_tensor::SparseTensorEncodingAttr::getCOOSegments() const {
SmallVector<COOSegment> ret;
if (!hasEncoding() || lvlRank <= 1)
if (getLvlRank() <= 1)
return ret;

ArrayRef<LevelType> lts = getLvlTypes();
Level l = 0;
while (l < lvlRank) {
while (l < getLvlRank()) {
auto lt = lts[l];
if (lt.isa<LevelFormat::Compressed, LevelFormat::LooseCompressed>()) {
auto cur = lts.begin() + l;
Expand All @@ -975,6 +982,25 @@ mlir::sparse_tensor::SparseTensorType::getCOOSegments() const {
return ret;
}

//===----------------------------------------------------------------------===//
// SparseTensorType Methods.
//===----------------------------------------------------------------------===//

bool mlir::sparse_tensor::SparseTensorType::isCOOType(Level startLvl,
bool isUnique) const {
if (!hasEncoding())
return false;
if (!isCompressedLvl(startLvl) && !isLooseCompressedLvl(startLvl))
return false;
for (Level l = startLvl + 1; l < lvlRank; ++l)
if (!isSingletonLvl(l))
return false;
// If isUnique is true, then make sure that the last level is unique,
// that is, when lvlRank == 1, the only compressed level is unique,
// and when lvlRank > 1, the last singleton is unique.
return !isUnique || isUniqueLvl(lvlRank - 1);
}

RankedTensorType
mlir::sparse_tensor::SparseTensorType::getCOOType(bool ordered) const {
SmallVector<LevelType> lvlTypes;
Expand Down
85 changes: 85 additions & 0 deletions mlir/test/Dialect/SparseTensor/invalid_encoding.mlir
Original file line number Diff line number Diff line change
Expand Up @@ -443,3 +443,88 @@ func.func private @NOutOfM(%arg0: tensor<?x?x?xf64, #NOutOfM>) {
func.func private @NOutOfM(%arg0: tensor<?x?x?xf64, #NOutOfM>) {
return
}

// -----

#CSR_ExpType = #sparse_tensor.encoding<{
map = (d0, d1) -> (d0 : dense, d1 : compressed),
posWidth = 32,
crdWidth = 32,
explicitVal = 1 : i32,
implicitVal = 0.0 : f32
}>

// expected-error@+1 {{explicit value type mismatch between encoding and tensor element type: 'i32' != 'f32'}}
func.func private @sparse_csr(tensor<?x?xf32, #CSR_ExpType>)

// -----

#CSR_ImpType = #sparse_tensor.encoding<{
map = (d0, d1) -> (d0 : dense, d1 : compressed),
posWidth = 32,
crdWidth = 32,
explicitVal = 1 : i32,
implicitVal = 0.0 : f32
}>

// expected-error@+1 {{implicit value type mismatch between encoding and tensor element type: 'f32' != 'i32'}}
func.func private @sparse_csr(tensor<?x?xi32, #CSR_ImpType>)

// -----

// expected-error@+1 {{expected a numeric value for explicitVal}}
#CSR_ExpType = #sparse_tensor.encoding<{
map = (d0, d1) -> (d0 : dense, d1 : compressed),
posWidth = 32,
crdWidth = 32,
explicitVal = "str"
}>
func.func private @sparse_csr(tensor<?x?xi32, #CSR_ExpType>)

// -----

// expected-error@+1 {{expected a numeric value for implicitVal}}
#CSR_ImpType = #sparse_tensor.encoding<{
map = (d0, d1) -> (d0 : dense, d1 : compressed),
posWidth = 32,
crdWidth = 32,
implicitVal = "str"
}>
func.func private @sparse_csr(tensor<?x?xi32, #CSR_ImpType>)

// -----

#CSR_ImpVal = #sparse_tensor.encoding<{
map = (d0, d1) -> (d0 : dense, d1 : compressed),
posWidth = 32,
crdWidth = 32,
implicitVal = 1 : i32
}>

// expected-error@+1 {{implicit value must be zero}}
func.func private @sparse_csr(tensor<?x?xi32, #CSR_ImpVal>)

// -----

#CSR_ImpVal = #sparse_tensor.encoding<{
map = (d0, d1) -> (d0 : dense, d1 : compressed),
posWidth = 32,
crdWidth = 32,
implicitVal = 1.0 : f32
}>

// expected-error@+1 {{implicit value must be zero}}
func.func private @sparse_csr(tensor<?x?xf32, #CSR_ImpVal>)

// -----

#CSR_OnlyOnes = #sparse_tensor.encoding<{
map = (d0, d1) -> (d0 : dense, d1 : compressed),
posWidth = 64,
crdWidth = 64,
explicitVal = #complex.number<:f32 1.0, 0.0>,
implicitVal = #complex.number<:f32 1.0, 0.0>
}>

// expected-error@+1 {{implicit value must be zero}}
func.func private @sparse_csr(tensor<?x?xcomplex<f32>, #CSR_OnlyOnes>)

0 comments on commit 83f3b1c

Please sign in to comment.