Skip to content

Commit

Permalink
Updated README.md
Browse files Browse the repository at this point in the history
  • Loading branch information
hcdenbakker authored Aug 18, 2021
1 parent d8d7a74 commit 707ab74
Showing 1 changed file with 170 additions and 1 deletion.
171 changes: 170 additions & 1 deletion README.md
Original file line number Diff line number Diff line change
@@ -1,2 +1,171 @@
# Sepia
taxonomic read classifier using using kraken2 algorithms and more...
Sepia is a (taxonomic) read classifier written in Rust based on (extensions) of the kraken2 algorithms (https://github.com/DerrickWood/kraken2), hence the name Sepia (just like the kraken a cephalopod, and the rust colored
pigment derived from it's ink sac). The reason I wrote Sepia is to create a software package that can be easily adapted to novel taxonomies or updates of taxonomies (e.g. GTDB), alter-
novel algorithms or data structures, and has features I would like myself (e.g., a fast batch mode).

## Installation
Download one of the precompiled binaries (currently only for macOS and Linux), or compile it yourself:
1. Install Rust (https://www.rust-lang.org/)
2. Clone the sepia repository:
`git clone https://github.com/hcdenbakker/sepia.git`
3. Compile sepia with `cargo` (Rust's compiler):
`cd sepia; cargo build --release` (Don't worry about the warnings you'll see)

## Running Sepia

Sepia works with subcommands, using `-h` or `--help` will get you extensive documentation:
```
sepia 0.0.1.
Henk C. den Bakker <[email protected]>
perfect hash index based read classifyer
USAGE:
sepia [SUBCOMMAND]
FLAGS:
-h, --help Prints help information
-V, --version Prints version information
SUBCOMMANDS:
batch_classify classifies batch of samples reads
build builds an index
classify classifies reads using an lca approach
help Prints this message or the help of the given subcommand(s)
```

### Building an index

To build an index you need collection of reference files (I masked low complexity regions using NCBI's DustMasker (https://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/app/dustmasker/)
in the 'masked folder') and a tab delimited file with the path to the reference file and the taxonomy string of the reference file. In the `ref_demo.txt` file you will find an example of what this
should look like; we have reference genomes of Salmonella and Escherichia of GTDB r95, and the associated taxonomy in string format.

```
./masked/Salmonella_enterica_masked.fasta d__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Enterobacterales;f__Enterobacteriaceae;g__Salmonella;s__Salmonella enterica
./masked/Salmonella_enterica_C_masked.fasta d__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Enterobacterales;f__Enterobacteriaceae;g__Salmonella;s__Salmonella enterica_C
./masked/Salmonella_enterica_E_masked.fasta d__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Enterobacterales;f__Enterobacteriaceae;g__Salmonella;s__Salmonella enterica_E
./masked/Salmonella_enterica_D_masked.fasta d__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Enterobacterales;f__Enterobacteriaceae;g__Salmonella;s__Salmonella enterica_D
./masked/Salmonella_bongori_masked.fasta d__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Enterobacterales;f__Enterobacteriaceae;g__Salmonella;s__Salmonella bongori
./masked/Escherichia_flexneri_masked.fasta d__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Enterobacterales;f__Enterobacteriaceae;g__Escherichia;s__Escherichia flexneri
./masked/Escherichia_coli_masked.fasta d__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Enterobacterales;f__Enterobacteriaceae;g__Escherichia;s__Escherichia coli
./masked/Escherichia_dysenteriae_masked.fasta d__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Enterobacterales;f__Enterobacteriaceae;g__Escherichia;s__Escherichia dysenteriae
./masked/Escherichia_coli_D_masked.fasta d__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Enterobacterales;f__Enterobacteriaceae;g__Escherichia;s__Escherichia coli_D
./masked/Escherichia_albertii_masked.fasta d__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Enterobacterales;f__Enterobacteriaceae;g__Escherichia;s__Escherichia albertii
./masked/Escherichia_coli_C_masked.fasta d__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Enterobacterales;f__Enterobacteriaceae;g__Escherichia;s__Escherichia coli_C
./masked/Escherichia_marmotae_masked.fasta d__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Enterobacterales;f__Enterobacteriaceae;g__Escherichia;s__Escherichia marmotae
./masked/Escherichia_sp000208585_masked.fasta d__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Enterobacterales;f__Enterobacteriaceae;g__Escherichia;s__Escherichia sp000208585
./masked/Escherichia_fergusonii_masked.fasta d__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Enterobacterales;f__Enterobacteriaceae;g__Escherichia;s__Escherichia fergusonii
./masked/Escherichia_sp001660175_masked.fasta d__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Enterobacterales;f__Enterobacteriaceae;g__Escherichia;s__Escherichia sp001660175
./masked/Escherichia_sp002965065_masked.fasta d__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Enterobacterales;f__Enterobacteriaceae;g__Escherichia;s__Escherichia sp002965065
```
If we have these files in place we can use the `build` subcommand to build an index.

```
./sepia build --help
builds an index
USAGE:
sepia build [OPTIONS] --index <index> --kmer <k-mer_size> --minimizer <minimizer> --refs <ref_file>
FLAGS:
-h, --help Prints help information
-V, --version Prints version information
OPTIONS:
-c, --batch <batch> Sets size of batch of reads to be processed in parallel (default 300)
-g, --gamma <gamma> gamma parameter used for perfect hash function in boom mode, default value 5.0
-i, --index <index>
-k, --kmer <k-mer_size> Sets k-mer size
-m, --minimizer <minimizer> minimizer size, default length minimizer is 0 (no minimizers), unless indicated
otherwise [default: 0]
-M, --mode <mode> build kraken2-like db (sepia), or a index with a perfect hash function (boom)
[default: sepia]
-r, --refs <ref_file> Sets the input file to use
-p, --threads <threads> number of threads to use, if not set one thread will be used
```
For the demo we build an index of the Salmonella and Escherichia references using a compact hash table (the data structure for the index used in kraken2), which is the default in Sepia:

`./sepia build -r ref_demo.txt -k 31 -m 21 -p 4 -c 2 -i demo_index`

This creates an index called 'demo_index'. Alternatively we can build an index if the `-M boom` option, which will create a smaller index with a perfect hash function. While the index is smaller with a perfect hash function,
the amount of RAM needed to build it is considerably larger, this is one of the experimental elements of Sepia.


## Classifying reads
```
./sepia classify --help
classifies reads using an lca approach
USAGE:
sepia classify [FLAGS] [OPTIONS] --index <index> --prefix <prefix> --query <query>
FLAGS:
-h, --help Prints help information
-H, --hll include HLL based estimates of cardinilaty of kmers and duplicity of kmers
-I, --interleaved Type of sequence data; pe: paired-end fastq.gz, se: single-end fastq.gz, inter: interleaved
paired-end fastq.gz, fasta: reads in fasta format
-V, --version Prints version information
OPTIONS:
-c, --batch <batch> Sets size of batch of reads to be processed in parallel (default 50,000)
-z, --compress_output <compress_output> gzip compress read classification file [default: true]
-i, --index <index> index to be used for search
-n, --prefix <prefix> prefix for output file(-s)
-Q, --quality <quality> kmers with nucleotides below this minimum phred score will be excluded
from the analyses (default 15)
-q, --query <query> query file(-s)fastq.gz
-t, --threads <threads> number of threads to use, if not set the maximum available number threads
will be used
```
To classify reads, we use the `classify` subcommand. Thanks to needletail, sepia will automatically detect if the files are fastq or fasta files, and if they are compressed (e.g., fastq.gz). If two files are given, Sepia will
assume the files are paired end. If you use an interleaved paired-end file, you have to use the `-I` flag, otherwise Sepia will assume it is a single end file. The `-H` can be used to implement hyperloglog, however the currently
implementation is slow and still experimental.
To perform read classification with the previously created index with default values:
`sepia classify -q your_data_1.fastq.gz your_data_2.fastq.gz -i demo_index -n your_output_name`

This will create two files; a file summarizing the analysis ('your_output_name_summary.txt') and a file with the individual read classifications ('your_output_name__classification.gz'). Using the following command line:

`sort -grk2 -t $'\t' your_output_name_summary.txt |head -3`

we can see the first 3 lines of the summary file sorted by number of reads:

```
root;cellular organisms;Bacteria;Proteobacteria;delta/epsilon subdivisions;Epsilonproteobacteria;Campylobacterales;Campylobacteraceae;Campylobacter;Campylobacter jejuni;Campylobacter jejuni subsp. jejuni 121338 0.719
root;cellular organisms;Bacteria;Proteobacteria;delta/epsilon subdivisions;Epsilonproteobacteria;Campylobacterales;Campylobacteraceae;Campylobacter 14249 0.820
root;cellular organisms;Bacteria;Proteobacteria;delta/epsilon subdivisions;Epsilonproteobacteria;Campylobacterales;Campylobacteraceae;Campylobacter;Campylobacter coli 13594 0.584
```
The first column shows the complete taxonomy lineage, the second the number of reads, and the third the average k-mer similarity or if minimizers are used the approximate average k-mer similarity for all reads classified as the taxon in column
one.

If we look at the first 3 lines of the classification file:

`zcat campy_kala_k31_classification.gz |head -3`

```
READ:1 root;cellular organisms;Bacteria;Proteobacteria;delta/epsilon subdivisions;Epsilonproteobacteria;Campylobacterales;Campylobacteraceae;Campylobacter;Campylobacter jejuni;Campylobacter jejuni subsp. jejuni 304 305
READ:2 root;cellular organisms;Bacteria;Proteobacteria;delta/epsilon subdivisions;Epsilonproteobacteria;Campylobacterales;Campylobacteraceae;Campylobacter;Campylobacter jejuni;Campylobacter jejuni subsp. jejuni 379 410
READ:3 root;cellular organisms;Bacteria;Proteobacteria;delta/epsilon subdivisions;Epsilonproteobacteria;Campylobacterales;Campylobacteraceae;Campylobacter;Campylobacter jejuni;Campylobacter jejuni subsp. jejuni 97 413
```
The first column shows the fastq header, the second the classification of the read, the third the number of kmers in the read supporting this classification, and the third the total number of kmers used for the classification. Note that the total
number of kmers will be dependent on your quality settings (the `-Q` parameter); the default is a phred score of 15, this has to be set to something like `-Q 5` for sequence error heavy technologies like Oxford nanopore.

In the scripts folder of the repository you will find a python script to generate the input for Krona plots from the classification file.

## Batch mode
If we are working with large indices (e.g., > 50Gb), loading the index into RAM usually takes longer than the actual read clasification. If you want to use Sepia on a batch of sequence data it is more time efficient to use the `batch_classify` subcommand.
The input for this subcommand is a tab delimited file pointing out the prefix to be used for the output file and the path(-s) to the input file(-s):

```
my_fasta /path/to/my/file.fasta
my_se_fastq /path/to/my/file.fastq.gz
my_pe_fastq /path/to/my/file_1.fastq.gz /path/to/my/file_2.fastq.gz
```
To run sepia in batch mode we now do:

`sepia batch_classify --index demo_index --query my_tab_delimited_file.txt --tag your_suffix`

The suffix will be included in the output file, I usually use it to show in the output files which index I used. Currently the batch function cannot be used on interleaved paired end files, these will be treated as single end files.

### To do:
1. Check available memory before index is created or loaded

0 comments on commit 707ab74

Please sign in to comment.