TensorFlow implementation of Ask Me Anything: Dynamic Memory Networks for Natural Language Processing.
- Python 3.6
- TensorFlow 1.4
- hb-config (Singleton Config)
- nltk (tokenizer and blue score)
- tqdm (progress bar)
init Project by hb-base
.
├── config # Config files (.yml, .json) using with hb-config
├── data # dataset path
├── notebooks # Prototyping with numpy or tf.interactivesession
├── dynamic_memory # dmn architecture graphs (from input to output)
├── __init__.py # Graph logic
├── encoder.py # Encoder
└── episode.py # Episode and AttentionGate
├── data_loader.py # raw_date -> precossed_data -> generate_batch (using Dataset)
├── hook.py # training or test hook feature (eg. print_variables)
├── main.py # define experiment_fn
└── model.py # define EstimatorSpec
Reference : hb-config, Dataset, experiments_fn, EstimatorSpec
- Implements DMN+ (Dynamic Memory Networks for Visual and Textual Question Answering (2016) by C Xiong)
example: bAbi_task1.yml
data:
base_path: 'data/'
task_path: 'en-10k/'
task_id: 1
PAD_ID: 0
model:
batch_size: 16
use_pretrained: true # (true or false)
embed_dim: 50 # if use_pretrained: only available 50, 100, 200, 300
encoder_type: uni # uni, bi
cell_type: gru # lstm, gru, layer_norm_lstm, nas
num_layers: 1
num_units: 32
memory_hob: 3
dropout: 0.0
reg_scale: 0.001
train:
learning_rate: 0.0001
optimizer: 'Adam' # Adagrad, Adam, Ftrl, Momentum, RMSProp, SGD
train_steps: 100000
model_dir: 'logs/bAbi_task1'
save_checkpoints_steps: 1000
check_hook_n_iter: 1000
min_eval_frequency: 1000
print_verbose: False
debug: False
Install requirements.
pip install -r requirements.txt
Then, prepare dataset and pre-trained glove.
sh scripts/fetch_babi_data.sh
sh scripts/fetch_glove_data.sh
Finally, start trand and evalueate model
python main.py --config bAbi_task1 --mode train_and_evaluate
✅ : Working
◽ : Not tested yet.
- ✅
evaluate
: Evaluate on the evaluation data. - ◽
extend_train_hooks
: Extends the hooks for training. - ◽
reset_export_strategies
: Resets the export strategies with the new_export_strategies. - ◽
run_std_server
: Starts a TensorFlow server and joins the serving thread. - ◽
test
: Tests training, evaluating and exporting the estimator for a single step. - ✅
train
: Fit the estimator using the training data. - ✅
train_and_evaluate
: Interleaves training and evaluation.
tensorboard --logdir logs
- Implementing Dynamic memory networks
- arXiv - Ask Me Anything: Dynamic Memory Networks for Natural Language Processing (2015. 6) by A Kumar
- arXiv - Dynamic Memory Networks for Visual and Textual Question Answering (2016. 3) by C Xiong
Dongjun Lee ([email protected])